How Modular Should Neural Module Networks Be for Systematic Generalization?

Vanessa D'Amario^{1,3}, Tomotake Sasaki^{2,3}, Xavier Boix^{1,3}

CENTER FOR Brains Minds+ Machines

Visual Question Answering (VQA)

Q1: How many gray rubber cubes are the same size as the yellow block?

Q2: There is a rubber thing that is the same color as the cylinder; what shape is it?

Q3: The matte ball that is the same size as the gray rubber object is what color?

Condition A

Condition A

Cubes are gray, blue, brown, or yellow.

Condition A

Cubes are gray, blue, brown, or yellow. Cylinders are **red**, green, **purple**, or cyan.

Condition A

Cubes are gray, blue, brown, or yellow. Cylinders are **red**, green, **purple**, or cyan. Spheres are all colors.

Condition A

Cubes are gray, blue, brown, or yellow. **Cylinders** are **red**, green, **purple**, or cyan. Spheres are all colors.

Condition B

Cylinders are gray, blue, brown, or yellow. **Cubes** are **red**, green, purple, or cyan. Spheres are all colors.

Condition A

Cubes are **gray**, **blue**, brown, or yellow. Cylinders are red, green, purple, or cyan. Spheres are all colors.

Condition B

Cylinders are gray, blue, brown, or yellow. Cubes are red, green, purple, or cyan. Spheres are all colors.

Is the **gray cube** the same size as the yellow cube?

Is the **green sphere** the same size as the yellow cube?

Is the **gray cube** the same size as the yellow cube?

Is the **green sphere** the same size as the yellow cube?

- learned?
- CLEVR models
- Purushwalkam et al. (2019), Task-driven modular networks for zero-shot compositional learning
- category-viewpoint combinations?

• Bahdanau et al. (2019), Systematic generalization: what is required and can it be

• Bahdanau et al. (2020), CLOSURE: Assessing systematic generalization of

• Madan et al. (2021), When and how do CNNs generalize to out-of-distribution

Modules in Neural Module Networks

World

spheres, cubes / yellow, blue

Modules in Neural Module Networks

World

spheres, cubes / yellow, blue

Library

shared module

all [<sphere, cube, yellow, blue>]

shape [<sphere, cube>]

Modules in Neural Module Networks

World

spheres, cubes / yellow, blue

Library

shared module

all [<sphere, cube, yellow, blue>]

shape [<sphere, cube>]

Usage

Question: Is this a yellow cube?

Three stages library

IMAGE ENCODER

to obtain visual features

INTERMEDIATE MODULES

to carry out sub-tasks

 \bigvee^{Π}

CLASSIFIER

How Modular Should Neural Module Networks Be for Systematic Generalization?

Libraries with different degrees of modularity

IMAGE ENCODER(S)

to obtain visual features

INTERMEDIATE MODULES

> to carry out sub-tasks

> > Л \/

CLASSIFIER(S)

Libraries with different degrees of modularity

IMAGE ENCODER(S)

to obtain visual features

INTERMEDIATE MODULES

> to carry out sub-tasks

> > Л \/

CLASSIFIER(S)

Libraries with different degrees of modularity

IMAGE ENCODER(S)

to obtain visual features

INTERMEDIATE MODULES

to carry out sub-tasks

CLASSIFIER(S)

 $\langle \rangle$

Q: "Is the green object left of '2'?"

VQA-MNIST limited combinations of visual attributes

SQOOP limited co-occurrence of objects

CLEVR-CoGenT application

Experiment Outline

VQA-MNIST: Limited visual attributes

Is the object blue? Is the object a '6'? Is the object small?

Are the two objects the same color/size/ category/brightness?

Is there a green object? Is there a bright object? Is there a '4'?

Is the green object left of '2'? Is '8' below the pink object?

group - all - all all - all - all all aroup - group 1.0 generalization 0.9 Systematic 8.0 0.7 0.6 0.5 2.4 5.1 55 26 **53.**65 85 1345 Average amount of training combinations (%) 1.0^{-1} Systematic generalization 0.9 0.8 0.7 0.6 0.5 13.25 21.0 26.2 52.9 2.65 5.1 Average amount of training combinations (%)

group - all - all all - all - all all group - group 1.0 generalization 0.9 Systematic 8.0 0.7 0.6 0.5 2.4 5.1 55 26 **53.**65 47 85 1345 Average amount of training combinations (%) 1.0^{-1} Systematic generalization 0.9 0.8 0.7 0.6 0.5 13.25 21.0 26.2 52.9 2.65 5.1 Average amount of training combinations (%)

About library choice: Tuning the degree of modularity, specially at the image encoder stage, improves systematic generalization

SQOOP: Limited co-occurrence of objects

Weaker bias

Is D left of G? [G][left of]

Bahdanau et al. (2019), Systematic generalization: what is required and can it be learned?

Stronger bias

Is D left of G? [G][D][left of]

Systematic generalization performance (%) on SQOOP

all - all - all all - sub-task - all

$99.8 \pm 0.2 \qquad 99.96 \pm 0.06$

Application on CLEVR-CoGenT split

Condition A

Cubes are gray, blue, brown, or yellow. Cylinders are red, green, purple, or cyan. Spheres are all colors.

Condition B

Cylinders are gray, blue, brown, or yellow. Cubes are red, green, purple, or cyan. Spheres are all colors.

Vector-NMN

CLOSURE: Assessing systematic generalization of CLEVR models Bahdanau et al. 2020

Vector-NMN

Our Vector-NMN with modular image encoder

)
cube])
rown])
)
е)
cube])
)
or)

Systematic generalization performance (%) on CLEVR-CoGenT

	Tensor-NMN	Vector-NMN	Vector-NMN with modular image encoder (ours)
count	69.7 ± 0.8	70.4 ± 0.4	$oldsymbol{71}\pm oldsymbol{1}$
equal_color	75.6 ± 0.8	74 ± 1	80 ± 1
equal_integer	82.7 ± 0.3	78 ± 2	85 ± 2
equal_material	74 ± 2	74.2 ± 0.7	$\mathbf{84\pm2}$
equal_shape	91 ± 2	89 ± 3	79 ± 2
equal_size	75 ± 1	75 ± 1	88 ± 2
exist	84.2 ± 0.4	84.4 ± 0.4	84.4 ± 0.5
greater_than	83.8 ± 0.6	83.6 ± 0.4	89 ± 1
less_than	80.7 ± 0.9	82.0 ± 0.5	87 ± 2
query_color	58 ± 1	60 ± 1	67 ± 4
query_material	84.1 ± 0.9	84.7 ± 0.4	$\mathbf{88.2 \pm 0.8}$
query_shape	37 ± 1	40 ± 3	52 ± 3
query_size	$8\overline{3.5\pm0.6}$	$8\overline{4.7\pm0.7}$	89.5 ± 0.5

Systematic generalization performance (%) on CLEVR-CoGenT

	Tensor-NMN	Vector-NMN	Vector-NMN with modular image encoder (ours)
count	69.7 ± 0.8	70.4 ± 0.4	$oldsymbol{71}\pm oldsymbol{1}$
equal_color	75.6 ± 0.8	74 ± 1	80 ± 1
equal_integer	82.7 ± 0.3	78 ± 2	85 ± 2
equal_material	74 ± 2	74.2 ± 0.7	$\mathbf{84\pm2}$
equal_shape	91 ± 2	89 ± 3	79 ± 2
equal_size	75 ± 1	75 ± 1	88 ± 2
exist	84.2 ± 0.4	84.4 ± 0.4	84.4 ± 0.5
greater_than	83.8 ± 0.6	83.6 ± 0.4	89 ± 1
less than	80.7 ± 0.9	82.0 ± 0.5	87 ± 2
query_color	58 ± 1	60 ± 1	67 ± 4
query_material	84.1 ± 0.9	84.7 ± 0.4	$f 88.2\pm0.8$
query_shape	37 ± 1	40 ± 3	$\mathbf{52 \pm 3}$
query_size	83.5 ± 0.6	84.7 ± 0.7	89.5 ± 0.5

Systematic generalization performance (%) on CLEVR-CoGenT

	Tensor-NMN	Vector-NMN	Vector-NMN with modular image encoder (ours)
count	69.7 ± 0.8	70.4 ± 0.4	$oldsymbol{71}\pm oldsymbol{1}$
equal_color	75.6 ± 0.8	74 ± 1	80 ± 1
equal_integer	82.7 ± 0.3	78 ± 2	85 ± 2
equal_material	74 ± 2	74.2 ± 0.7	$\mathbf{84\pm2}$
equal_shape	91 ± 2	89 ± 3	79 ± 2
equal_size	75 ± 1	75 ± 1	88 ± 2
exist	84.2 ± 0.4	84.4 ± 0.4	84.4 ± 0.5
greater_than	83.8 ± 0.6	83.6 ± 0.4	89 ± 1
less_than	80.7 ± 0.9	82.0 ± 0.5	87 ± 2
query_color	58 ± 1	60 ± 1	67 ± 4
query material	84.1 ± 0.9	84.7 ± 0.4	88.2 ± 0.8
query_shape	37 ± 1	40 ± 3	52 ± 3
query_sıze	83.5 ± 0.0	84.1 ± 0.1	89.5 ± 0.5

Library choice:

- Critical at the image encoder stage (for bias in the image)

Conclusions

Tuning the degree of modularity improves systematic generalization

Other types of bias

Neural mechanisms for systematic generalization

New research questions

How Modular Should Neural Module Networks Be for Systematic Generalization?

Vanessa D'Amario^{1,3}, Tomotake Sasaki^{2,3}, Xavier Boix^{1,3}

CENTER FOR Brains Minds+ Machines

