

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition

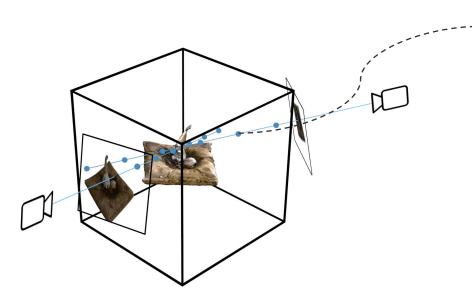
Mark Boss¹, Varun Jampani², Raphael Braun¹, Jonathan T. Barron², Ce Liu^{3*}, Hendrik P. A. Lensch¹ University of Tübingen ¹, Google Research², Microsoft³

Conference on Neural Information Processing Systems (NeurIPS), 2021

Relightable 3D assets from image collections

- Learning shape, illumination and material properties (BRDF) from unconstrained image collection
- Enables relighting under any illumination

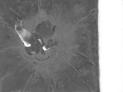
Samples from image collection (Taken under unconstrained illumination)



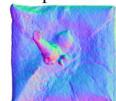
Neural Reflectance Volume

• Estimate density, BRDF and normals at a given 3D location

Sample Input Images



Density Normals Diffuse Albedo Specular Albedo Roughness



Specular

Diffuse

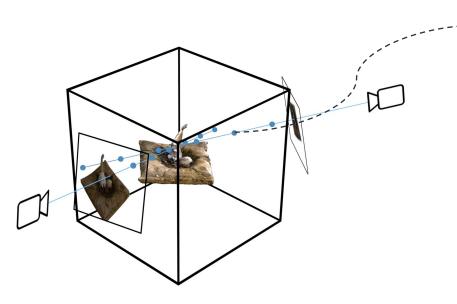
Roughness

Normal

Two main challenges

1. Rendering with BRDF and illumination is expensive

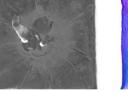
$$L_o(\boldsymbol{x}, \boldsymbol{\omega}_o) = \underbrace{\frac{\boldsymbol{b}_o}{\pi} \int_{\Omega} L_i(\boldsymbol{x}, \boldsymbol{\omega}_i) (\boldsymbol{\omega}_i \cdot \boldsymbol{n}) \, d\boldsymbol{\omega}_i}_{\text{diffuse}} + \underbrace{\int_{\Omega} f_s(\boldsymbol{x}, \boldsymbol{\omega}_i, \boldsymbol{\omega}_o; \boldsymbol{b}_s, \boldsymbol{b}_r) L_i(\boldsymbol{x}, \boldsymbol{\omega}_i) (\boldsymbol{\omega}_i \cdot \boldsymbol{n}) \, d\boldsymbol{\omega}_i}_{\text{specular}}$$

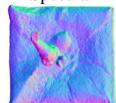

- Physically based rendering enables relighting under any illumination
- 2. Solution space is highly ambiguous

Neural Reflectance Volume – Previous Work

- NeRD[1] and PhySG[2] create neural volume jointly with illumination estimation
- Spherical Gaussian illumination model

Sample Input Images




Density Normals Diffuse Albedo Specular Albedo Roughness

Specular

Roughness

Diffuse

Normal

[1] Boss et al. "NeRD: Neural Reflectance Decomposition from Image Collections." In ICCV 2021

[2] Zhang et al. "PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Material Editing and Relighting." In CVPR 2021

Issues with Spherical Gaussians

Fitted SGs

SGs Render

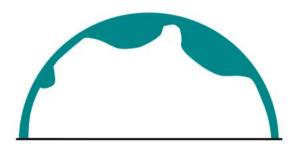
GT Environment Map

GT Render

• Pre-computing light integrals for faster rendering [4]

$$L_{o}(\boldsymbol{x},\boldsymbol{\omega}_{o}) = \underbrace{\frac{\boldsymbol{b}_{d}}{\pi} \int_{\Omega} L_{i}(\boldsymbol{x},\boldsymbol{\omega}_{i})}_{\text{diffuse}} (\boldsymbol{\omega}_{i} \cdot \boldsymbol{n}) d\boldsymbol{\omega}_{i}} + \underbrace{\int_{\Omega} f_{s}(\boldsymbol{x},\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o};\boldsymbol{b}_{s},\boldsymbol{b}_{r}) L_{i}(\boldsymbol{x},\boldsymbol{\omega}_{i})}_{\text{specular}} L_{i}(\boldsymbol{x},\boldsymbol{\omega}_{i}) d\boldsymbol{\omega}_{i}}$$

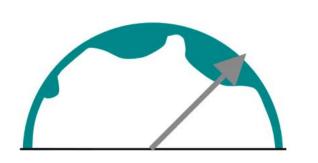
$$L_{o}(\boldsymbol{x},\boldsymbol{\omega}_{o}) \approx \underbrace{(\boldsymbol{b}_{d}/\pi)\tilde{L}_{i}(\boldsymbol{n},1)}_{\text{diffuse}} + \underbrace{\boldsymbol{b}_{s}(F_{0}(\boldsymbol{\omega}_{o},\boldsymbol{n})B_{0}(\boldsymbol{\omega}_{o} \cdot \boldsymbol{n},\boldsymbol{b}_{r}) + B_{1}(\boldsymbol{\omega}_{o} \cdot \boldsymbol{n},\boldsymbol{b}_{r}))\tilde{L}_{i}(\boldsymbol{\omega}_{r},\boldsymbol{b}_{r})}_{\text{specular}}$$


$$\tilde{L}_{i}(\boldsymbol{\omega}_{r},\boldsymbol{b}_{r}) = \int_{\Omega} D(\boldsymbol{b}_{r},\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{r})L_{i}(\boldsymbol{x},\boldsymbol{\omega}_{i})d\boldsymbol{\omega}_{i}$$

• Pre-computing light integrals for faster rendering [4]

$$L_{o}(\boldsymbol{x}, \boldsymbol{\omega}_{o}) = \underbrace{\underbrace{\boldsymbol{b}_{d}}_{\pi} \int_{\Omega} L_{i}(\boldsymbol{x}, \boldsymbol{\omega}_{i})(\boldsymbol{\omega}_{i} \cdot \boldsymbol{n}) \, d\boldsymbol{\omega}_{i}}_{\text{diffuse}} + \underbrace{\int_{\Omega} f_{s}(\boldsymbol{x}, \boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}; \boldsymbol{b}_{s}, b_{r}) L_{i}(\boldsymbol{x}, \boldsymbol{\omega}_{i})(\boldsymbol{\omega}_{i} \cdot \boldsymbol{n}) \, d\boldsymbol{\omega}_{i}}_{\text{specular}}$$

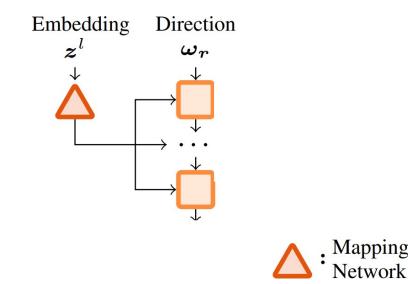
$$L_{o}(\boldsymbol{x}, \boldsymbol{\omega}_{o}) \approx \underbrace{(\boldsymbol{b}_{d}/\pi) \tilde{L}_{i}(\boldsymbol{n}, 1)}_{\text{diffuse}} + \underbrace{\boldsymbol{b}_{s}(F_{0}(\boldsymbol{\omega}_{o}, \boldsymbol{n}) B_{0}(\boldsymbol{\omega}_{o} \cdot \boldsymbol{n}, b_{r}) + B_{1}(\boldsymbol{\omega}_{o} \cdot \boldsymbol{n}, b_{r})) \tilde{L}_{i}(\boldsymbol{\omega}_{r}, b_{r})}_{\text{specular}}$$


$$\tilde{L}_i(\boldsymbol{\omega}_r, b_r) = \int_{\Omega} D(b_r, \boldsymbol{\omega}_i, \boldsymbol{\omega}_r) L_i(\boldsymbol{x}, \boldsymbol{\omega}_i) d\boldsymbol{\omega}_i$$

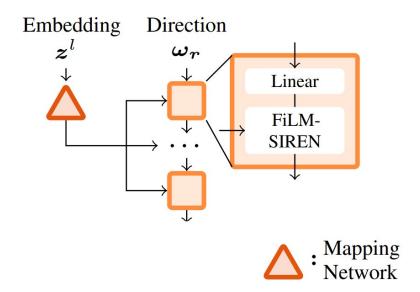
$$\tilde{L}_i(\omega_r, b_r) = \int_{\Omega} D(b_r, \omega_i, \omega_r) L_i(x, \omega_i) d\omega_i$$

Pre-integrated Environment

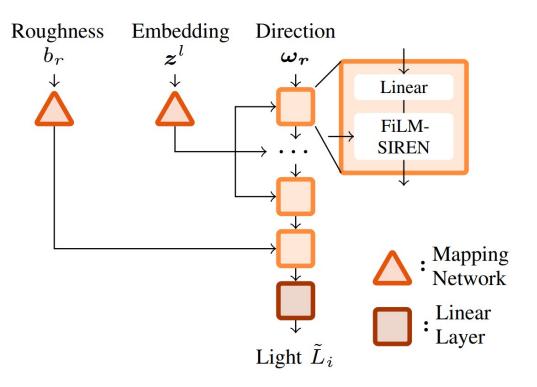
Rendered Sphere


$$\tilde{L}_i(\omega_r, b_r) = \int_{\Omega} D(b_r, \omega_i, \omega_r) L_i(x, \omega_i) d\omega_i$$

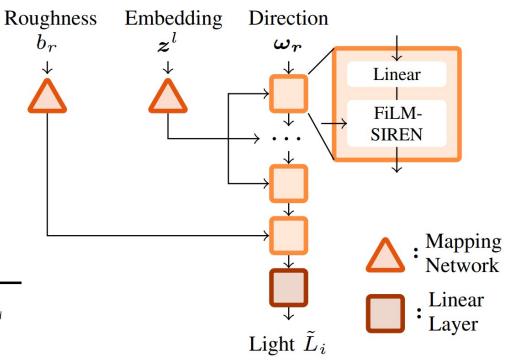
NEURAL PIL

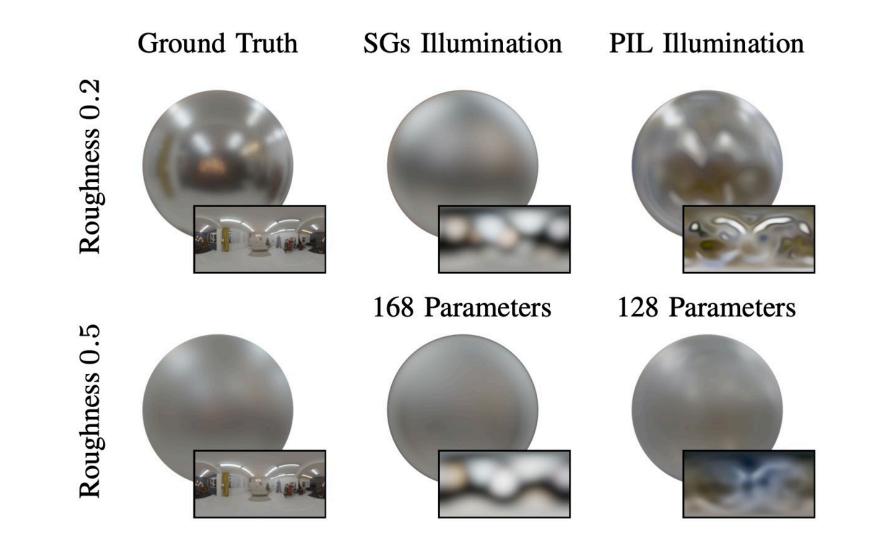

Challenge 1: Rendering with BRDF and illumination is expensive

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition – NeurIPS 2021


- Light pre-integration is still expensive.
- We need to do the pre-integration on the fly as we also estimate lighting.
- We propose Neural-PIL that converts light pre-integration into a simple network query.
- Architecture based on Pi-GAN[1].

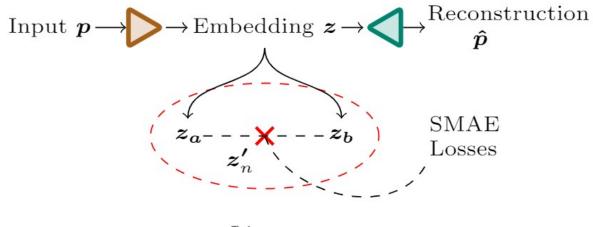
- Light pre-integration is still expensive.
- We need to do the pre-integration on the fly as we also estimate lighting.
- We propose Neural-PIL that converts light pre-integration into a simple network query.
- Architecture based on Pi-GAN[1].




- Light pre-integration is still expensive.
- We need to do the pre-integration on the fly as we also estimate lighting.
- We propose Neural-PIL that converts light pre-integration into a simple network query.
- Architecture based on Pi-GAN[1].

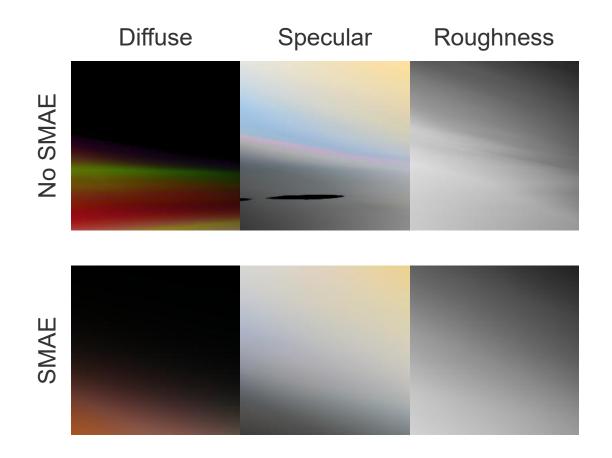
- Light pre-integration is still expensive.
- We need to do the pre-integration on the fly as we also estimate lighting.
- We propose Neural-PIL that converts light pre-integration into a simple network query.
- Architecture based on Pi-GAN[1].

Rendering	SGs	Neural-PIL
1 Million Samples	0.21s	$0.00186\mathrm{s}$



DEEP PRIORS WITH SMOOTH MANIFOLD AUTO-ENCODERS

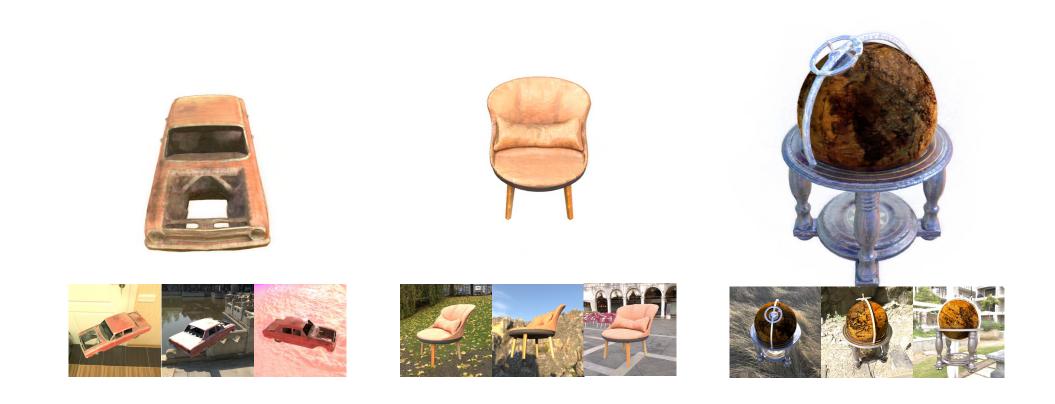
Challenge 2: Solution space is highly ambiguous


Smooth Manifold Auto-Encoders (SMAE)

- Learn a smooth low-dimensional manifold to represent BRDF and lighting.
- Auto-encoder learning with interpolated latent space.

Linear Interpolation

BRDF Manifold with SMAE



BRDF-SMAE Latent Space Interpolation (Corners)

RESULTS

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition – NeurIPS 2021

Novel View and Relighting

Compared to NeRF[1] and NeRD[2]

Ground Truth

NeRF

[1] Mildenhall et al. "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis." In ECCV 2020[2] Boss et al. "NeRD: Neural Reflectance Decomposition from Image Collections." In ICCV 2021

Parameter $[PSNR\uparrow]$	Li $et al.[1]$	Li <i>et al.</i> $[1] + NeRF[2]$	NeRD[3]	Ours
Diffuse	1.06	1.15	18.24	20.22
Specular			25.70	16.84
Roughness	17.18	17.28	15.00	24.82

[1] Li et al. "Learning to Reconstruct Shape and Spatially-Varying Reflectance from a Single Image." In Siggraph Asia 2018

[2] Mildenhall et al. "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis." In ECCV 2020

[3] Boss et al. "NeRD: Neural Reflectance Decomposition from Image Collections." In ICCV 2021

View synthesis (Single illumination dataset)			Both view synthesis and relighting						
	Syntl	netic	Real-World			Synthetic		Real-World	
Method	$\mathrm{PSNR}\uparrow$	$\mathrm{SSIM}\uparrow$	$\overline{\mathrm{PSNR}}^{\uparrow}$	$\mathrm{SSIM}\uparrow$	Method	$\overline{\mathrm{PSNR}}^{\uparrow}$	$\mathrm{SSIM}\uparrow$	$\mathrm{PSNR}\uparrow$	$\mathrm{SSIM}\uparrow$
NeRF[1]	34.24	0.97	23.34	0.85	NeRF[1]	21.05	0.89	20.11	0.87
NeRD[2] Ours	$\begin{array}{c} 30.07\\ 30.08 \end{array}$	$\begin{array}{c} 0.95 \\ 0.95 \end{array}$	23.86 23.95	0.88 0.90	NeRD[2] Ours	27.96 29.24	0.95 0.96	25.81 26.23	$\begin{array}{c} 0.95 \\ 0.95 \end{array}$

[1] Mildenhall et al. "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis." In ECCV 2020
[2] Boss et al. "NeRD: Neural Reflectance Decomposition from Image Collections." In ICCV 2021

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS 2021

Neural-PIL: Summary

- Estimate shape, BRDF and illumination from images taken under different lightings.
- Addresses two main challenges
 - Expensive rendering \rightarrow Neural-PIL for fast and effective light integration.
 - Ambiguous solution space \rightarrow Smooth manifold auto-encoders.
- Experiments on both synthetic and real-world objects.
- State-of-the-art decomposition, view synthesis and relighting results.

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition

Thanks for watching

Visit the project page at: <u>https://markboss.me/publication/2021-neural-pil/</u>