On Provable Benefits of Depth in Training Graph Convolutional Networks

Weilin Cong

Pennsylvania State University wxc272@psu.edu

Morteza Ramezani

Pennsylvania State University morteza@cse.psu.edu

Mehrdad Mahdavi

Pennsylvania State University mzm616@psu.edu

Motivation

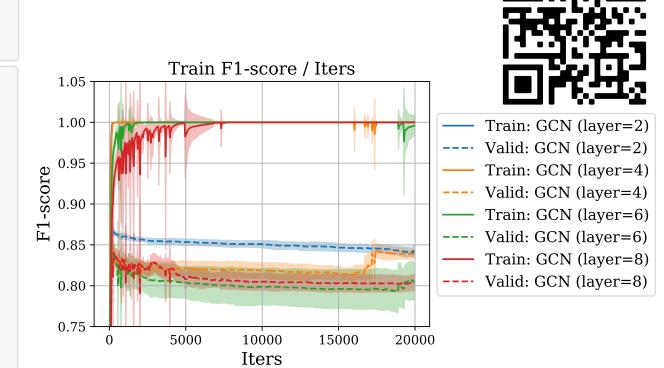
- Graph neural networks have achieved state-of-the-art performance in many graph-structured applications.
- Existing GNNs are limited to very shallow structures because GNNs suffer from performance degradation issue as the number of layers increases.
- The conventional wisdom is that adding the number of layers cause **over-smoothing**.
- We observe that there exists a discrepancy between the theoretical understanding of the inherent capabilities of GNN and their practical performance.

Motivation

import dgl.data

Experiment observations

```
dataset = dgl.data.CoraGraphDataset()
print('Number of categories:', dataset.num classes)
from dgl.nn import GraphConv
class GCN(nn.Module):
    def init (self, in feats, h feats, num classes, num layers=2):
        super(GCN, self). init ()
        self.convs = nn.ModuleList()
        self.num layers = num layers
        self.convs.append(GraphConv(in_feats, h_feats))
        for in range(num layers-2):
            self.convs.append(GraphConv(h feats, h feats))
        self.convs.append(GraphConv(h feats, num classes))
    def forward(self, g, h):
        for ell in range(self.num layers-1):
            h = self.convs[ell](g, h)
            h = F.relu(h)
        h = self.convs[-1](q, h)
        return h
```

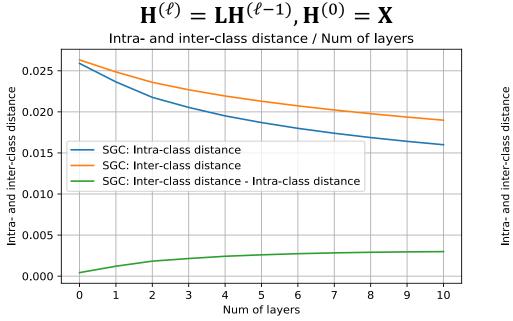


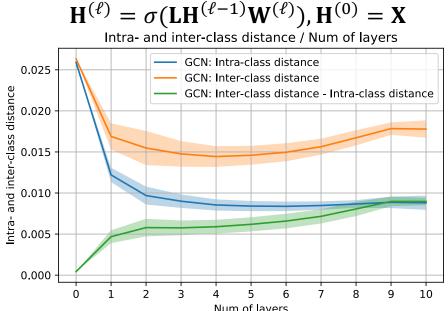
Example code

Motivation

- In this paper, we aim at answering two fundamental questions:
 - Q1: Does increasing depth really impair the expressive power of GCNs?
 - Q2: If GCN is expressive, then why do deep GCNs generalize poorly?

• Over-smoothing [1]: a phenomenon where all node embeddings converge to a single vector after applying multiple graph convolution operations to the node features



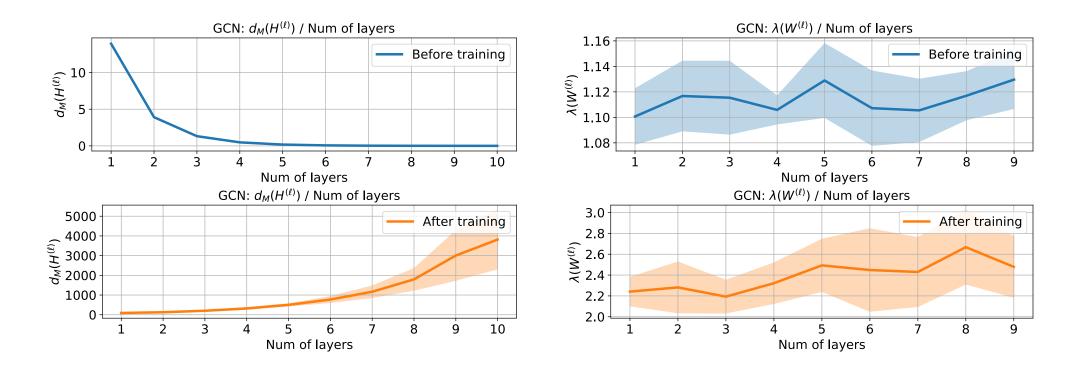


[1] Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "Deeper insights into graph convolutional networks for semi-supervised learning." Thirty-Second AAAI conference on artificial intelligence. 2018.

- [2] takes non-linearity and weight matrices into consideration.
- Notations:
 - Expressive power $d_{\mathcal{M}}(\mathbf{H}^{(\ell)})$ as the distance of node embeddings $\mathbf{H}^{(\ell)}$ to a subspace \mathcal{M} that only has node degree information.
 - λ_L as the second largest eigenvalue of Laplacian, λ_W as the largest singular value of weight matrices
- They show $d_{\mathcal{M}}(\mathbf{H}^{(\ell)}) \leq (\lambda_L \lambda_W)^{\ell} d_{\mathcal{M}}(\mathbf{H}^{(0)})$, i.e., the expressive power will be exponentially decreasing (if $\lambda_L \lambda_W < 1$) or increasing (if $\lambda_L \lambda_W > 1$) as the number of layers increases.

- However, the above assumption (i.e., $\lambda_L \lambda_W < 1$) not always hold.
- For example,
 - Let assume weight matrices $W^{(\ell)} \in \mathbb{R}^{d_{\ell-1} \times d_{\ell}}$ is initialized by uniform distribution $\mathcal{N}(0, \sqrt{1/d_{\ell-1}})$.
 - By the Gordon's theorem for Gaussian matrices, we know that the expected largest singular value is bounded by $\mathbb{E}[\lambda_W] \leq 1 + \sqrt{d_\ell/d_{\ell-1}}$.
 - This also hold for other initializations.
- Besides, since real-world graphs are sparse, λ_L is close to 1.
 - Cora λ_L =0.9964, Citeseer λ_L =0.9987, PubMed λ_L =0.9905

• Besides, we empirically test on real-world dataset



- Deeper GCNs have stronger expressive power than the shallow GCNs.
 - [3] shows an appropriately trained GCNs is as expressive as 1-ML test
 - An *L*-layer GCN can encode any different computation tree into different representations.
 - Then, we can characterize the expressiveness of *L*-layer GCN by the number of computation graphs it can encode

Theorem 1. Suppose \mathcal{T}^L is a computation tree with binary node features and node degree at least d. Then the richness of the output of L-GCN defined on \mathcal{T}^L is at least |L-GCN $(\mathcal{T}^L)| \geq 2(d-1)^{L-1}$.

• Besides, we provide global convergence of GCNs

Theorem 2. Let $\theta_t = \{\mathbf{W}_t^{(\ell)} \in \mathbb{R}^{d_{\ell-1} \times d_{\ell}}\}_{\ell=1}^{L+1}$ be the model parameter at the t-th iteration and using square loss $\mathcal{L}(\theta) = \frac{1}{2} \|\mathbf{H}^{(L)}\mathbf{W}^{(L+1)} - \mathbf{Y}\|_F^2$, $\mathbf{H}^{(\ell)} = \sigma(\mathbf{L}\mathbf{H}^{(\ell-1)}\mathbf{W}^{(\ell)})$ as objective function. Then, under the condition that $d_L \geq N$ we can obtain $\mathcal{L}(\theta_T) \leq \epsilon$ if $T \geq C(L) \log(\mathcal{L}(\theta_0)/\epsilon)$, where ϵ is the desired error and C(L) is a function of GCN depth L that grows as GCN becomes deeper.

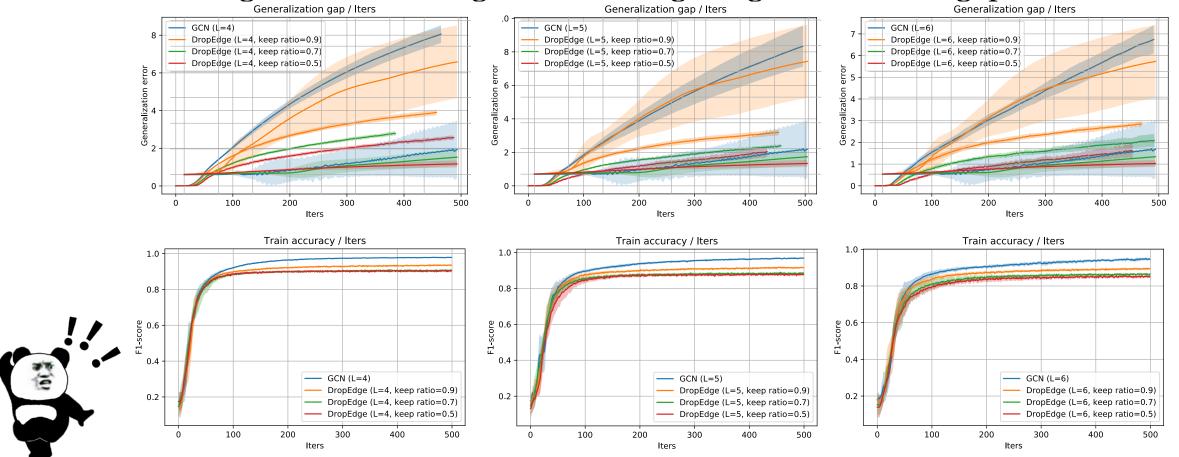
• It is still unclear why a deeper GCN has worse performance than a shallow GCN during the evaluation phase.

Q2: If GCN is expressive, why then deep GCNs generalize poorly?

- To answer this question, we provide a different view by analyzing the impact of GCN structures on the generalization.
- We study the generalization ability of GCNs via *transductive* uniform stability:
 - difference between the training and testing errors for the random partition of a full dataset into training and testing sets.
- Interesting observation:
 - Existing methods that originally designed to alleviate the oversmoothing issue (*e.g.*, *SGC*, *APPNP*, *GCNII*, *DropEdge*, *PairNorm*) all enjoys a better generalization power than classical GCN.

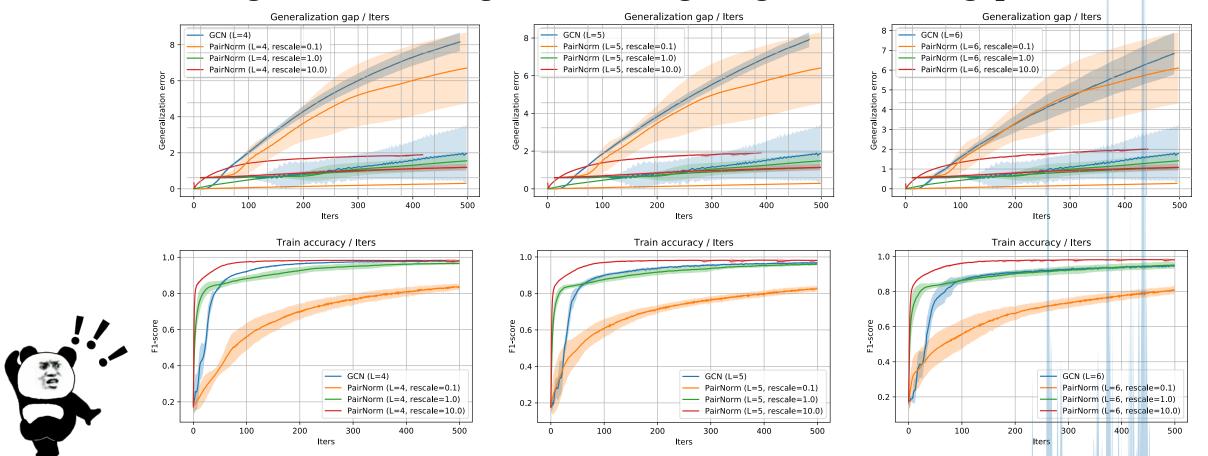
Q2: If GCN is expressive, then Why do deep GCNs generalize poorly?

• For example, **DropEdge** is hurting the training accuracy (i.e., not alleviating over-smoothing) but reducing the generalization gap



Q2: If GCN is expressive, then why do deep GCNs generalize poorly?

• For example, **PairNorm** is hurting the training accuracy (i.e., not alleviating over-smoothing) but reducing the generalization gap



Q2: If GCN is expressive, then why do deep GCNs generalize poorly?

• Informal statement on generalization result

Theorem 4 (Informal). We say model is ϵ -uniformly stable with $\epsilon = \frac{2\eta\rho_f G_f}{m}\sum_{t=1}^T (1+\eta L_f)^{t-1}$ where the result of ρ_f , G_f , L_f are summarized in Table 1, and other related constants as

$$B_{d}^{\alpha} = (1 - \alpha) \sum_{\ell=1}^{L} (\alpha \sqrt{d})^{\ell-1} + (\alpha \sqrt{d})^{L}, \ B_{w}^{\beta} = \beta B_{w} + (1 - \beta),$$

$$B_{\ell,d}^{\alpha,\beta} = \max \left\{ \beta \left((1 - \alpha)L + \alpha \sqrt{d} \right), (1 - \alpha)LB_{w}^{\beta} + 1 \right\}.$$
(1)

Table 1: Comparison of uniform stability constant ϵ of GCN variants, where $\mathcal{O}(\cdot)$ is used to hide constants that shared between all bounds.

	ρ_f and G_f	L_f	C_1 and C_2
$\epsilon_{ m GCN}$	$\mathcal{O}(C_1^L C_2)$	$\mathcal{O}(C_1^L C_2((L+2)C_1^L C_2 + 2))$	$C_1 = \max\{1, \sqrt{d}B_w\}, C_2 = \sqrt{d}(1+B_x)$
$\epsilon_{ m ResGCN}$	$\mathcal{O}(C_1^L C_2)$	$\mathcal{O}(C_1^L C_2((L+2)C_1^L C_2 + 2))$	$C_1 = 1 + \sqrt{d}B_w, \ C_2 = \sqrt{d}(1 + B_x)$
$\epsilon_{ ext{APPNP}}$	$\mathcal{O}(C_1)$	$\mathcal{O}(C_1(C_1C_2)+1)$	$C_1 = B_d^{\alpha} B_x, C_2 = \max\{1, B_w\}$
$\epsilon_{ ext{GCNII}}$	$\mathcal{O}(\beta C_1^L C_2)$	$\mathcal{O}\left(\alpha\beta C_1^L C_2\left((\alpha\beta L + 2)C_1^L C_2 + 2\beta\right)\right)$	$C_1 = \max\{1, \alpha\sqrt{d}B_w^{\beta}\}, \ C_2 = \sqrt{d} + B_{\ell,d}^{\alpha,\beta}B_x$
$\epsilon_{ ext{DGCN}}$	$\mathcal{O}(C_1)$	$\mathcal{O}(C_1(C_1C_2)+1)$	$C_1 = (\sqrt{d})^L B_x, C_2 = \max\{1, B_w\}$

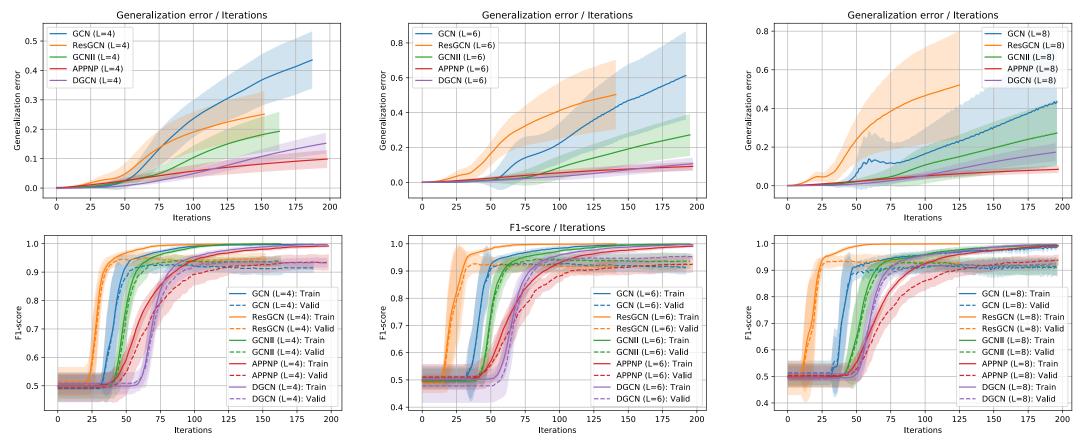
Proposed GNN architecture

- Based on our generalization analysis, we propose *Decoupled GCN*, with the following forward propagation rule.
 - α_{ℓ} , β_{ℓ} are trainable parameters
 - $\mathbf{P} = \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ and \mathbf{P}^{ℓ} stands for \mathbf{P} to the power of ℓ

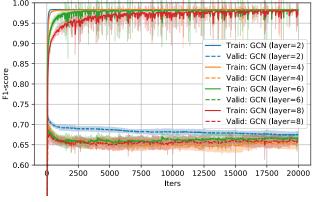
$$\mathbf{Z} = \sum_{\ell=1}^{L} \alpha_{\ell} f^{(\ell)}(\mathbf{X}), \ f^{(\ell)}(\mathbf{X}) = \mathbf{P}^{\ell} \mathbf{X} \left(\beta_{\ell} \mathbf{W}^{(\ell)} + (1 - \beta_{\ell}) \mathbf{I} \right) \right)$$

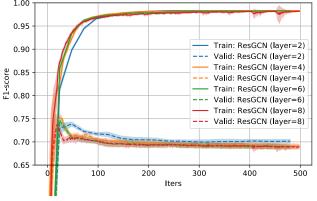
Empirical validation

 Validate the correctness of the theoretical results on synthetic dataset

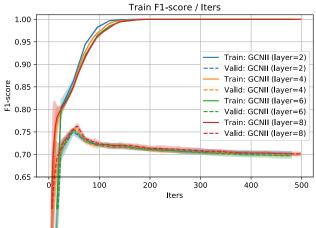


Empiri





• Validate t



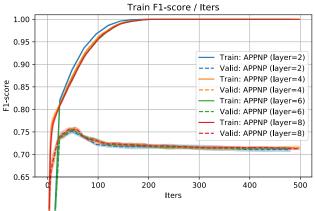


Table 3: Comparison of F1-score on OGB-Arxiv dataset for different number of layers

Model	α	2 Layers	4 Layers	8 Layers	12 Layers	16 Layers
GCN	_	$71.02\% \pm 0.14$	$71.56\% \pm 0.19$	$71.28\% \pm 0.33$	$70.28\% \pm 0.23$	$69.37\% \pm 0.46$
ResGCN	_	$70.66\% \pm 0.48$	$72.41\% \pm 0.31$	$72.56\% \pm 0.31$	$72.46\% \pm 0.23$	$72.11\% \pm 0.28$
GCNII	0.9	$71.35\% \pm 0.21$	$72.57\% \pm 0.23$	$72.06\% \pm 0.42$	$71.31\% \pm 0.62$	$69.99\% \pm 0.80$
GCNII	0.8	$71.14\% \pm 0.27$	$72.32\% \pm 0.19$	$71.90\% \pm 0.41$	$71.21\% \pm 0.23$	$70.56\% \pm 0.72$
GCNII	0.5	$70.54\% \pm 0.30$	$72.09\% \pm 0.25$	$71.92\% \pm 0.32$	$71.24\% \pm 0.47$	$71.02\% \pm 0.58$
APPNP	0.9	$67.38\% \pm 0.34$	$68.02\% \pm 0.55$	$66.62\% \pm 0.48$	$67.43\% \pm 0.50$	$67.42\% \pm 1.00$
APPNP	0.8	$66.71\% \pm 0.32$	$68.25\% \pm 0.43$	$66.40\% \pm 0.89$	$66.51\% \pm 2.09$	$66.56\% \pm 0.74$
DGCN	_	$71.21\% \pm 0.25$	$72.29\% \pm 0.18$	$72.39\% \pm 0.21$	${\bf 72.63\% \pm 0.12}$	$72.41\% \pm 0.07$