Fast Pure Exploration via Frank-Wolfe

Po-An Wang¹, Ruo-Chun Tzeng², and Alexandre Proutiere¹ Conference on Neural Information Processing Systems, 2021

¹EECS, Division of Decision and Control System

²EECS, Division of Theoretical Computer Science KTH Royal Institute of Technology

Pure exploration on structured bandits

Stochastic Multi-Armed Bandit (MAB)

K arms (K prob. distribution ν_1, \ldots, ν_K), the mean of ν_k is μ_k

 ν_1

 ν_2

 ν_3

 ν_5

Stochastic Multi-Armed Bandit (MAB)

K arms (K prob. distribution ν_1, \ldots, ν_K), the mean of ν_k is μ_k

In round t, an agent

- 1. pulls arm $A_t \in [K]$
- 2. receives the reward $X_{A_t}(t) \sim \nu_{A_t}$

Sequential sampling strategy: $A_t \in \mathcal{F}_t = \sigma[A_1, X_1, \dots, A_{t-1}, X_{t-1}]$

Goal: Identify a certain answer $i^*(\mu) \in \mathcal{I}$ Example: Identify the best arm $i^*(\mu) = \operatorname{argmax}_{k \in [K]} \mu_k$ A strategy consists of

- a sampling rule A_t (arm to explore)
- a stopping rule τ (time to stop)
- a $\mathcal{F}_{ au}$ -measurable decision rule $\hat{\imath} \in \mathcal{I}$ (answer to return)

Goal: Identify a certain answer $i^*(\mu) \in \mathcal{I}$ Example: Identify the best arm $i^*(\mu) = \operatorname{argmax}_{k \in [K]} \mu_k$ A strategy consists of

- a sampling rule A_t (arm to explore)
- a stopping rule au (time to stop)
- a $\mathcal{F}_{ au}$ -measurable decision rule $\hat{\imath} \in \mathcal{I}$ (answer to return)

We wish to minimize $\mathbb{E}_{\mu}[\tau]$ subject to $\mathbb{P}_{\mu}[\hat{\imath} \neq i^{*}(\mu)] < \delta$

"Side information" is encoded by the **structure** Popular structures: Unstructured, Linear, Lipschitz, Dueling, Combinatorial, Unimodal, Monotone, Spectral and Cascading

"Side information" is encoded by the structure

Popular structures: Unstructured, Linear, Lipschitz, Dueling, Combinatorial, Unimodal, Monotone, Spectral and Cascading

Question 1. What is the sample complex gain achievable when exploiting the structure?

"Side information" is encoded by the structure

Popular structures: Unstructured, Linear, Lipschitz, Dueling, Combinatorial, Unimodal, Monotone, Spectral and Cascading

Question 1. What is the sample complex gain achievable when exploiting the structure?

Question 2. Can we devise a computational efficient algorithm achieving the promised gains for all structures?

Lower bound [GK16]

For any good strategy,

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_{\mu}[\tau]}{\log(\frac{1}{\delta})} \geq T^{\star}(\mu),$$

where $T^{\star}(\mu)^{-1} = \sup_{\omega \in \Sigma} \inf_{\lambda \in Alt(\mu)} \sum_{k=1}^{K} \omega_k d(\mu_k, \lambda_k)$

- $\Sigma: K 1$ simplex
- Alt $(\mu) = \{\lambda \in \Lambda : i^*(\lambda) \neq i^*(\mu)\}$
- $d(\mu_k, \lambda_k)$: KL-divergent of arm-k reward distribution under $oldsymbol{\lambda}$ and $oldsymbol{\mu}$

Lower bound [GK16]

For any good strategy,

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_{\mu}[\tau]}{\log(\frac{1}{\delta})} \geq T^{\star}(\mu),$$

where $T^{\star}(\mu)^{-1} = \sup_{\omega \in \Sigma} \inf_{\lambda \in Alt(\mu)} \sum_{k=1}^{K} \omega_k d(\mu_k, \lambda_k)$

- $\Sigma: K 1$ simplex
- Alt $(\mu) = \{\lambda \in \Lambda : i^*(\lambda) \neq i^*(\mu)\}$
- $d(\mu_k, \lambda_k)$: KL-divergent of arm-k reward distribution under λ and μ
- \Rightarrow An optimal algorithm has a sampling strategy described by

$$\omega^{\star}(\mu) = \operatorname*{argmax}_{\omega \in \Sigma} F_{\mu}(\omega),$$

where $F_{\mu}(\omega) = \inf_{\lambda \in \operatorname{Alt}(\mu)} \sum_{k=1}^{K} \omega_k d(\mu_k, \lambda_k)$

Frank-Wolfe based sampling (FWS)

• Devise a simple algorithm (FW-based) to track $x(t) \xrightarrow{t o \infty} \omega^{\star}(\mu)$

- Devise a simple algorithm (FW-based) to track $x(t) \xrightarrow{t o \infty} \omega^{\star}(\mu)$
- Envelope theorem shows that F_μ (ω) = min_{j∈J} f_j(ω, μ), where J is a finite set and f_j(ω, μ) is smooth ∀j ∈ J (F_μ is non-smooth)

- Devise a simple algorithm (FW-based) to track $x(t) \xrightarrow{t o \infty} \omega^{\star}(\mu)$
- Envelope theorem shows that F_μ(ω) = min_{j∈J} f_j(ω, μ), where J is a finite set and f_j(ω, μ) is smooth ∀j ∈ J (F_μ is non-smooth)
- To deal with non-smoothness, define

 $H_{F_{\mu}}(\omega, r) = \operatorname{cov} \{ \nabla_{\omega} f_j(\omega, \mu) : j \in \mathcal{J}, f_j(\omega, \mu) < F_{\mu}(\omega) + r \}$

- Devise a simple algorithm (FW-based) to track $x(t) \xrightarrow{t o \infty} \omega^{\star}(\mu)$
- Envelope theorem shows that F_μ(ω) = min_{j∈J} f_j(ω, μ), where J is a finite set and f_j(ω, μ) is smooth ∀j ∈ J (F_μ is non-smooth)
- To deal with non-smoothness, define

$$H_{F_{\mu}}(\omega,r) = \operatorname{cov} \left\{
abla_{\omega} f_j(\omega,\mu) : j \in \mathcal{J}, f_j(\omega,\mu) < F_{\mu}(\omega) + r
ight\}$$

• Update

$$\begin{cases} \mathbf{z}(t+1) \leftarrow \operatorname{argmax}_{\mathbf{z} \in \mathbf{\Sigma}} \min_{h \in H_{F_{\mu}(\mathbf{x}(t), r_t)}} \langle \mathbf{z} - \mathbf{x}(t), h \rangle, \\ \mathbf{x}(t+1) \leftarrow \frac{t}{t+1} \mathbf{x}(t) + \frac{1}{t+1} \mathbf{z}(t+1) \end{cases}$$

Input: Confidence level δ , sequence $\{r_t\}_{t>1}$

Initialization: Sample each arm once and update $\omega(K), \mathbf{x}(K) = (\frac{1}{K}, \dots, \frac{1}{K})$, and $\hat{\mu}(K)$ $t \leftarrow K$

While $tF_{\hat{\mu}(t)}(\boldsymbol{\omega}(t) < \beta(\delta, t) \leftarrow \text{Stopping criteria or } \hat{\mu}(t-1) \notin \Lambda$ $IF\sqrt{\lfloor t/K \rfloor} \in \mathbb{N} \text{ or } \hat{\mu}(t-1) \notin \Lambda$, (Forced exploration) $\boldsymbol{z}(t) \leftarrow (\frac{1}{K}, \dots, \frac{1}{K})$ Else, (FW update)

$$z(t) \leftarrow \underset{z \in \Sigma}{\operatorname{argmax}} \min_{h \in H_{F_{\hat{\mu}(t-1)}}(x(t-1), r_t)} \langle z - x(t-1), h \rangle$$

Update $\mathbf{x}(t) \leftarrow \frac{t-1}{t}\mathbf{x}(t-1) + \frac{1}{t}\mathbf{z}(t)$

Sample $A_t \leftarrow \operatorname{argmax}_k x_k(t) / \omega_k(t-1)$ (ties broken arbitrarily) Update $\omega(t)$ and $\hat{\mu}(t)$

Output: $i^*(\hat{\mu}(t))$

Theoretical Results

Theorem

For most pure exploration problems in structured bandits, FWS satisfies:

$$\mathbb{P}_{\mu}[\hat{\imath} \neq i^{\star}(\mu)] < \delta \text{ and } \limsup_{\delta \to 0} \frac{\mathbb{E}_{\mu}[\tau]}{\log(\frac{1}{\delta})} \leq T^{\star}(\mu)$$

With further assumptions, we can provide **non-asymptotic** upper bound for $\mathbb{E}_{\mu}[\tau]$

Numerical Results

Averaged sample complexity at $\delta=0.01$

Averaged sample complexity at $\delta=0.01$

Experiment (iii) Lipschitz bandits

Averaged Sample complexity at $\delta = 0.01$

This is the first result for Lipschitz bandits in literatures

Related works:

- LMA [Mén19]: Apply mirror ascent to update **x**(t)
- Gamification [DMSV20, Sha21, JMKK21]: Use 2 player game to reach $\omega^{\star}(\mu)$

Unclear to extend the above approaches to general structures

Related works:

- LMA [Mén19]: Apply mirror ascent to update **x**(t)
- Gamification [DMSV20, Sha21, JMKK21]: Use 2 player game to reach $\omega^{\star}(\mu)$

Unclear to extend the above approaches to general structures Conclusion:

- FWS is computationally and statistically efficient for general pure exploration problems
- Theoretically, FWS matchs the instance-specific lower bounds
- Numerically, FWS outperforms all the other optimal algorithms in structured bandits

Reference

- Rémy Degenne, Pierre Ménard, Xuedong Shang, and Michal Valko, Gamification of pure exploration for linear bandits, Proc. of ICML, 2020.
- Aurélien Garivier and Emilie Kaufmann, *Optimal best arm identification with fixed confidence*, Proc. of COLT, 2016.
- Marc Jourdan, Mojmír Mutnỳ, Johannes Kirschner, and Andreas Krause, *Efficient pure exploration for combinatorial bandits with semi-bandit feedback*, Proc. of ALT, 2021.
- Pierre Ménard, Gradient ascent for active exploration in bandit problems, arXiv (2019).
- Xuedong Shang, *Linbai: Gamification of pure exploration for linear bandits*, https://github.com/xuedong/LinBAI.jl, 2021, [Online; accessed 09-May-2021].

