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Pure exploration on structured
bandits



Stochastic Multi-Armed Bandit (MAB)

K arms (K prob. distribution ν1, . . . , νK ), the mean of νk is µk

ν1 ν2 ν3 ν4 ν5

In round t, an agent

1. pulls arm At ∈ [K ]
2. receives the reward XAt (t) ∼ νAt

Sequential sampling strategy: At ∈ Ft = σ[A1,X1, . . . ,At−1,Xt−1]
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Pure exploration with fixed confidence

Goal: Identify a certain answer i?(µ) ∈ I
Example: Identify the best arm i?(µ) = argmaxk∈[K ] µk

A strategy consists of

• a sampling rule At (arm to explore)
• a stopping rule τ (time to stop)
• a Fτ -measurable decision rule ı̂ ∈ I (answer to return)

We wish to minimize Eµ[τ ] subject to Pµ [̂ı 6= i?(µ)] < δ
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Structured bandits

“Side information” is encoded by the structure

Popular structures: Unstructured, Linear, Lipschitz, Dueling,
Combinatorial, Unimodal, Monotone, Spectral and Cascading

Question 1. What is the sample complex gain achievable when
exploiting the structure?

Question 2. Can we devise a computational efficient algorithm
achieving the promised gains for all structures?
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Lower bound [GK16]

For any good strategy,

lim inf
δ→0

Eµ[τ ]
log(1δ )

≥ T ?(µ),

where T ?(µ)−1 = supω∈Σ infλ∈Alt(µ)
∑K

k=1 ωkd(µk , λk)

• Σ :K − 1 simplex
• Alt(µ) = {λ ∈ Λ : i?(λ) 6= i?(µ)}
• d(µk , λk) : KL-divergent of arm-k reward distribution under λ and µ

⇒ An optimal algorithm has a sampling strategy described by
ω?(µ) = argmax

ω∈Σ
Fµ(ω),

where Fµ(ω) = inf
λ∈Alt(µ)

K∑
k=1

ωkd(µk , λk)
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Frank-Wolfe based sampling (FWS)



Frank-Wolfe based sampling

• Devise a simple algorithm (FW-based) to track
x(t) t→∞−−−→ ω?(µ)

• Envelope theorem shows that Fµ (ω) = minj∈J fj(ω, µ),
where J is a finite set and fj(ω, µ) is smooth ∀j ∈ J (Fµ is
non-smooth)

• To deal with non-smoothness, define

HFµ(ω, r) = cov {∇ωfj(ω,µ) : j ∈ J , fj(ω,µ) < Fµ(ω) + r}

• Update z(t + 1)← argmaxz∈Σ minh∈HFµ(x(t),rt )〈z − x(t), h〉,
x(t + 1)← t

t+1x(t) + 1
t+1z(t + 1)
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FWS

Input: Confidence level δ, sequence {rt}t≥1

Initialization: Sample each arm once and update ω(K), x(K) = ( 1
K , . . . ,

1
K ), and µ̂(K)

t ←K

While tFµ̂(t)(ω(t) < β(δ, t) ←Stopping criteria or µ̂(t − 1) /∈ Λ

IF
√
bt/Kc ∈ N or µ̂(t − 1) /∈ Λ, (Forced exploration) z(t)← ( 1

K , . . . ,
1
K )

Else, (FW update)

z(t)← argmax
z∈Σ

min
h∈HFµ̂(t−1) (x(t−1),rt )

〈z − x(t − 1), h〉

Update x(t)← t−1
t x(t − 1) + 1

t z(t)

Sample At ← argmaxk xk (t)/ωk (t − 1) (ties broken arbitrarily)
Update ω(t) and µ̂(t)

Output: i?(µ̂(t))
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Theoretical Results



Asymptotic optimality of FWS

Theorem
For most pure exploration problems in structured bandits, FWS
satisfies:

Pµ [̂ı 6= i?(µ)] < δ and lim supδ→0
Eµ[τ ]
log( 1

δ
) ≤ T ?(µ)

With further assumptions, we can provide non-asymptotic upper
bound for Eµ[τ ]
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Numerical Results



Experiment (i) Unstructured bandits

Averaged sample complexity at δ = 0.01

Bernoulli Gaussian

9



Experiment (ii) Linear bandits

Averaged sample complexity at δ = 0.01

BAI ThresholdingBandit
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Experiment (iii) Lipschitz bandits

Averaged Sample complexity at δ = 0.01

Experiment 1 Experiment 2

This is the first result for Lipschitz bandits in literatures
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Related work and conclusion

Related works:

• LMA [Mén19]: Apply mirror ascent to update x(t)
• Gamification [DMSV20, Sha21, JMKK21]: Use 2 player game
to reach ω?(µ)

Unclear to extend the above approaches to general structures

Conclusion:

• FWS is computationally and statistically efficient for general
pure exploration problems

• Theoretically, FWS matchs the instance-specific lower bounds
• Numerically, FWS outperforms all the other optimal
algorithms in structured bandits
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