

Google

Aligning Silhouette Topology for Self-Adaptive 3D Human Pose Recovery

Mugalodi Rakesh^{*1} Jogendra Nath Kundu^{*1} Varun Jampani² R. Venkatesh Babu¹

¹Indian Institute of Science ²Google Research

* Equal contribution

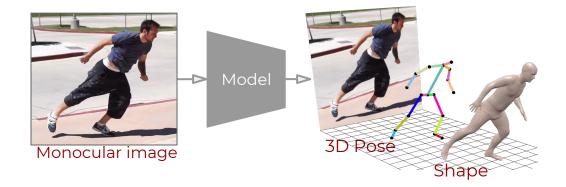
Motivation

Approach

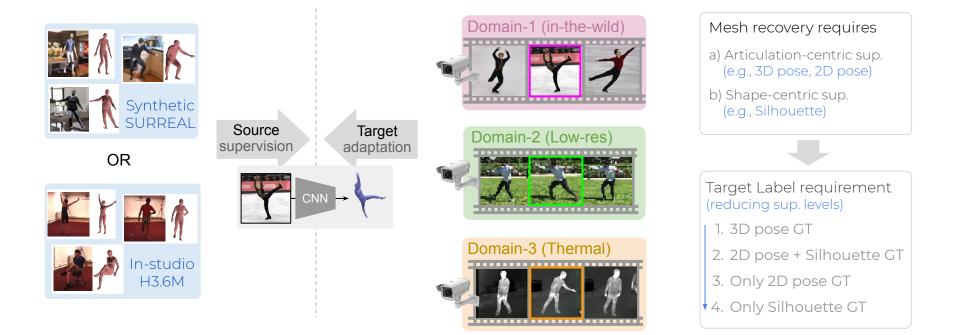
Summary

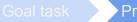
Goal task: 3D Human Pose Recovery

• Inferring the 3D human pose from monocular RGB images.

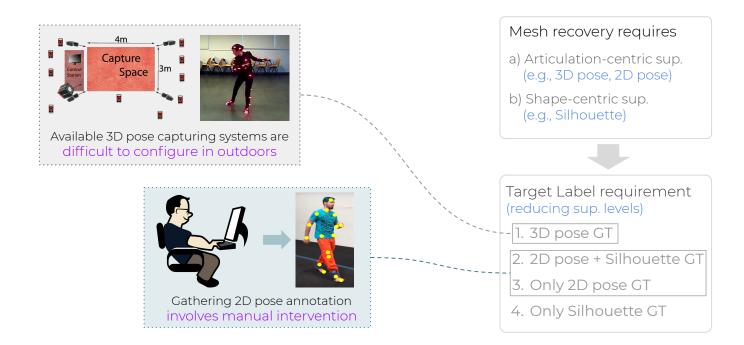


Domain adaptation: improving deployability of available solution





Domain adaptation: improving deployability of available solution



One must minimize the target label requirements for convenient deployment.

Approach

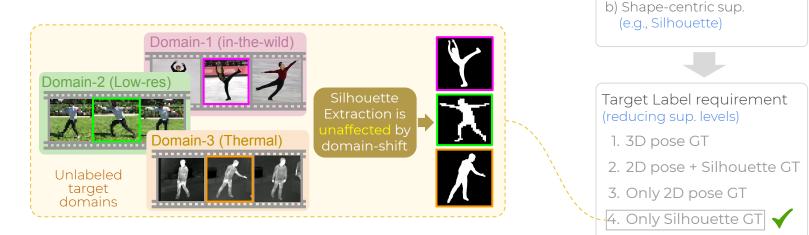
Mesh recovery requires

a) Articulation-centric sup.

(e.g., 3D pose, 2D pose)

Domain adaptation: improving deployability of available solution

• Silhouette extracted via classical vision based BG subtraction on static camera feed is found to be considerably robust against domain-shifts.



We aim to build an adaptation framework that relies only on silhouette supervision.

Challenges: developing silhouette based self-adaptive framework

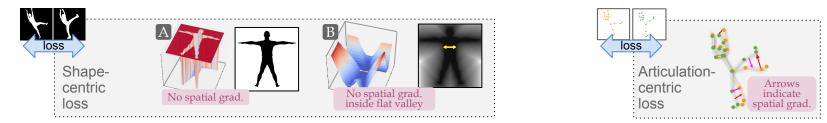
Silhouette losses used in literature:

- A Pixel-level L1 or cross-entropy \rightarrow no gradient along spatial direction
- $\mathbb B$ Chamfer loss b/w the 2D silhouette point sets \rightarrow remains shape-centric

These silhouette losses are not self-sufficient

(Requires to be employed in tandem with a direct 3D or 2D pose supervision)

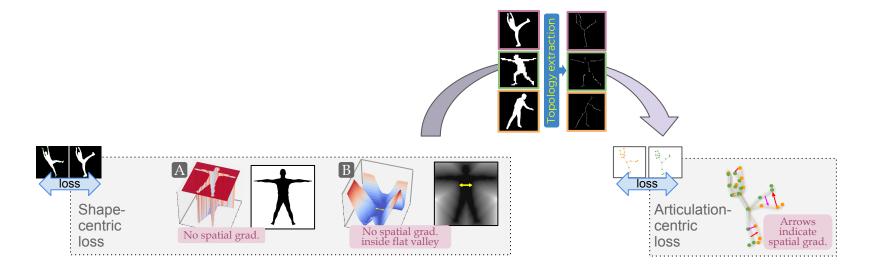
• Don't provide reliable articulation centric supervision \rightarrow degenerate solution



[1] Lassner *et. al.* "Unite the people: Closing the loop between 3d and 2d human representations", CVPR '17 [2] Pavlakos *et. al.* "Learning to estimate 3d human pose and shape from a single color image.", CVPR '18

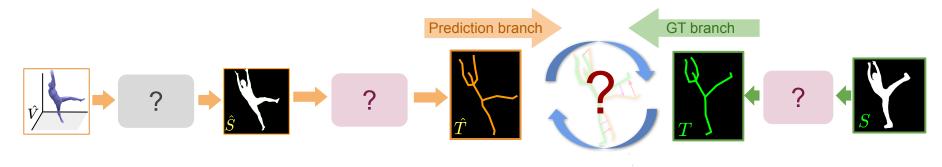
Proposed solution: disentangle topological-skeleton from raw silhouettes

- A new representation, termed as "*topological-skeleton*" to devise a novel self-sufficient silhouette loss. (Topological-skeleton is a thin-lined pattern that represents the geometric and structural core of a silhouette mask.)
- This facilitates an auxiliary articulation-centric supervision in the absence of 2D/3D pose GT.

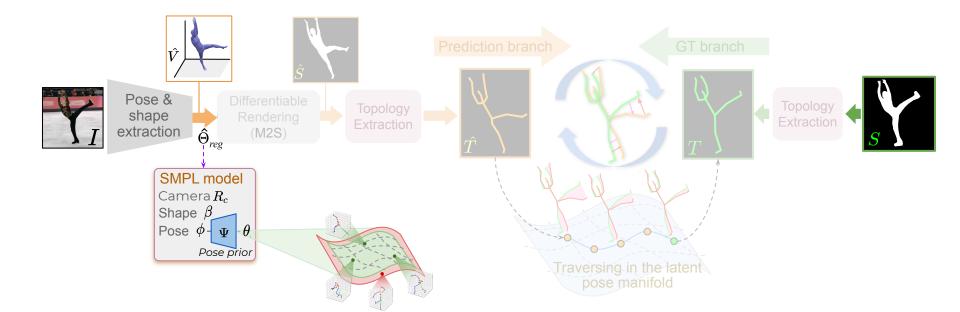


Proposed solution: using topological-skeleton for self-adaptation

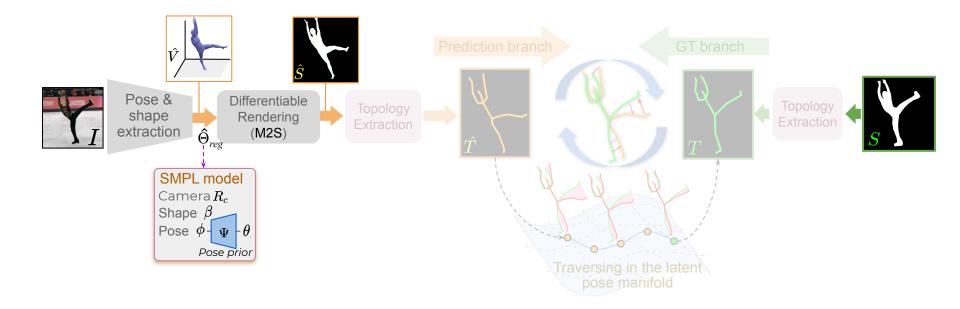
- Requirements to realize this framework:
 - a) A way to obtain binary silhouettes from the predicted mesh.
 - b) Differentiable topology extraction module
 - c) A reliable loss on the extracted topology



• Obtaining the mesh for an image I via the SMPL regressor.

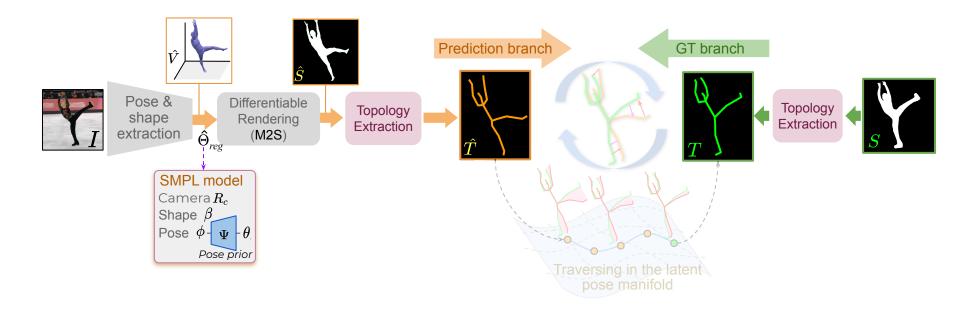


a) M2S: A differentiable rendering module for obtaining silhouettes from predicted mesh.



a) M2S: A differentiable rendering module for obtaining silhouettes from predicted mesh.

b) A differentiable formulation for extracting topological-skeleton via distance-maps..



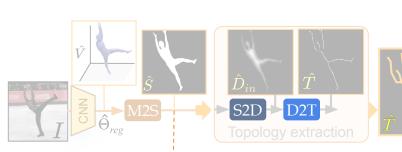
a) Distance-map, $\boldsymbol{\mathsf{D}}$ (extracted from silhouette $\boldsymbol{\mathsf{S}})$

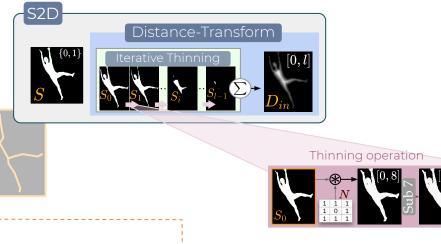
- A spatial map D(u), whose intensity at each pixel-location u ∈ U represents its distance from the closest mask-boundary pixel of S.
 - Inwards distance-map, D_{in}(u)
 - Outwards distance-map, D_{out}(u)
- b) Topological-skeleton, T (extracted from D_{in})
 - A thin-lined pattern that represents the geometric and structural core of a silhouette mask **S**.
 - Realized as the ridges-lines of D_{in}.

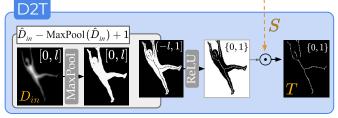
Golland et. al. "Fixed topology skeletons". In CVPR, 2000
Chang et. al. "Extracting skeletons from distance maps". In IJCSNS, 2007.

Approach: internal implementation details of sub-modules

- Distance map via Iterative thinning
- Topology as ridge lines of D_{in}



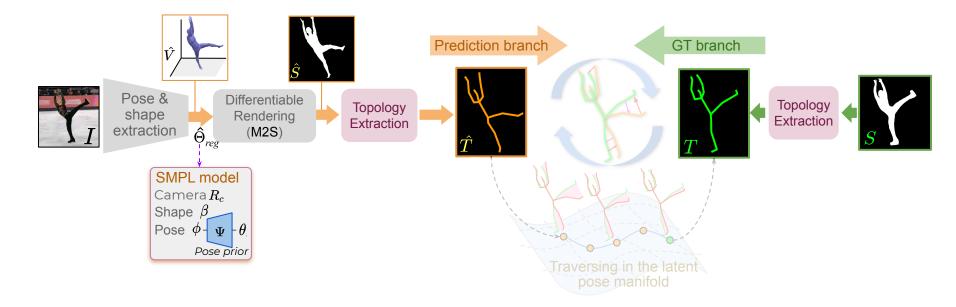




a) M2S: A differentiable rendering module for obtaining silhouettes from predicted mesh.

b) A differentiable formulation for extracting topological-skeleton via distance-maps..

c) Devising a alignment loss between \hat{T} and T.



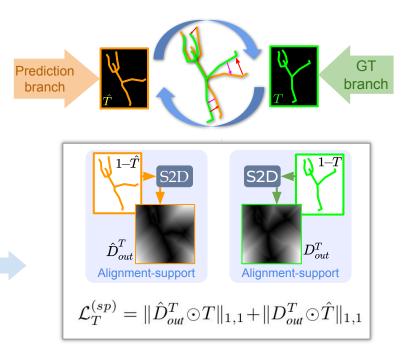
Approach: the topological alignment objective

Devising a loss between \hat{T} and T

- L2/L1 loss → no spatial grad.
- Chamfer loss → requires point-set conversion.
- Chamfer inspired loss on spatial maps.

How can we avoid spatial-map to point-set mapping?

Solution: Formalize an equivalent of Chamfer using outwards distance-map D_{out}.



Approach: a summary

a) silhouette obtained via differentiable rendering module. (M2S)

b) topological-skeleton extracted from silhouettes as ridge lines in distance maps.

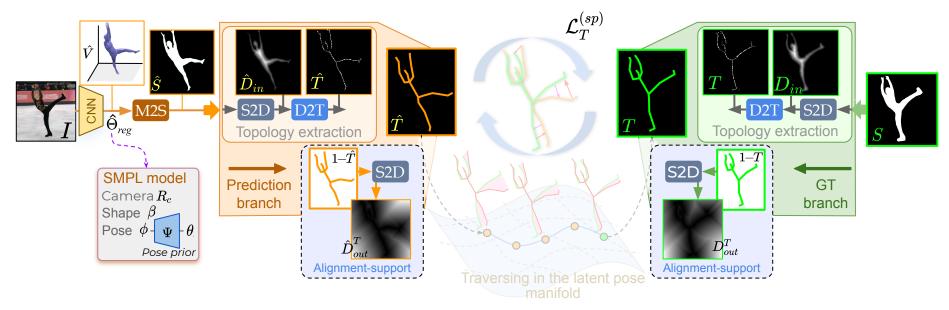


Approach: a summary

a) silhouette obtained via differentiable rendering module. (M2S)

b) topological-skeleton extracted from silhouettes as ridge lines in distance maps.

c) formalized an alignment loss between \hat{T} and T.



Results: adaptation from Synthetic to Real

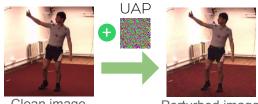
Sup.	Method	$PA-MPJPE(\downarrow)$	Sup.	Method	$\text{MPJPE}(\downarrow)$	PA-MPJPE(↓)
Full	Pavlakos <i>et al.</i> [40] HMR [22] SPIN [25]	75.9 56.8 41.1	Full	HMR [22] Kanazawa <i>et al.</i> [23] SPIN [25]	128.1 116.5 98.6	81.3 72.6 59.2
Weak	SPIN [25] HMR (unpaired) [22] SPIN (unpaired) [25] Ours($S \rightarrow R$, weak)	62.0 58.1	pervised Weak	$\begin{array}{l} \text{Orior}_{-} \text{arts}_{34]} \\ \text{SMPLify [4]} \\ \text{Doersch et al. (RGB+2D) [10]} \\ Ours(S \rightarrow R, weak) \end{array}$	- 199.2 - 126.3	157.0 106.1 82.4 79.1
Unsup.	Kundu <i>et al.</i> (unsup) [26] <i>Ours</i> ($S \rightarrow R$)	90.5 81.3	Unsup	Doersch <i>et al.</i> (DANN) [10] Kundu <i>et al.</i> (unsup) [26]	- 187.1 - 159.0	103.0 102.7 100.1 95.1

Results: adaptation from Synthetic to Real

Sup.	Method P	PA-MPJPE(↓)	Sup.	Method	$\text{MPJPE}(\downarrow)$	PA-MPJPE(↓)
Full	Pavlakos <i>et al.</i> [40] HMR [22] agains SPIN [25]	at weakly-super	vised	HMR [22] Pprior-arts SPIN [25]	128.1 116.5 98.6	
Weak	HMR (unpaired) [22] SPIN (unpaired) [25] Ours($S \rightarrow R$, weak)	66.5 62.0 58.1	Weak	Martinez <i>et al.</i> [34] SMPLify [4] Doersch <i>et al.</i> (RGB+2D) [10] <i>Ours</i> ($S \rightarrow R$, <i>weak</i>)	199.2 - 126.3	157.0 106.1 82.4 79.1
Unsup.	Kundu <i>et al.</i> (unsup) [26] <i>Ours</i> ($S \rightarrow R$)	90.5 81.3	Unsup	Doersch <i>et al.</i> (DANN) [10] Kundu <i>et al.</i> (unsup) [26]	187.1 	103.0 102.7 100.1 95.1

Results: self-adaptation from Real to UAP-H36M

• Universal Adversarial Perturbation (UAP) is an instance-agnostic perturbation that inflict a drop in the task performance.



Clean image

Perturbed image

р.		Adaptation from R to UAP-H3M						
	Method	1	MPJPE ((↓)	PA-MPJPE (\downarrow)			
		4/255	8/255	16/255	4/255	8/255	16/255	
Pre-Adapt.	SPIN [25] Ours(R)	65.8 67.7	98.2 103.9	160.1 161.8	44.6 46.9	60.8 63.6	90.7 91.2	
Post-Adapt.	A1: SPIN+ $\mathcal{L}_{2D}^{(p)}$ A2: SPIN+ $\mathcal{L}_{2D}^{(p)}$ + $\mathcal{L}_{S}^{(p)}$ Ours($R \rightarrow UAP$)	64.5 64.1 63.6	94.0 89.1 84.7	151.2 136.5 125.2	43.4 43.4 43.2	59.5 58.9 57.6	89.8 85.1 79.4 <	

[1] Moosavi-Dezfooli et al., "Universal adversarial perturbations.", CVPR '17

Results: self-adaptation from Real to LR-3DPW

Low resolution (LR) images inflict a drop in task performance.

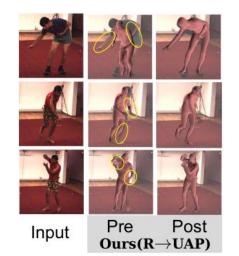
Normal image

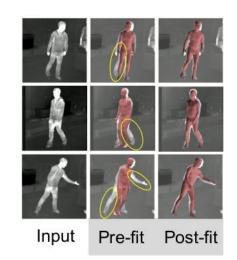
Low-res image

		Adaptation from R to LR-3DPW						
	Method	MPJPE (\downarrow)			PA-l	Ē(↓)		
		96	52	32	96	52	32	
Pre-Adapt.	SPIN [25] <i>Ours(R)</i>			176.4 178.1				
Post-Adapt.	A1: SPIN+ $\mathcal{L}_{2D}^{(p)}$ A2: SPIN+ $\mathcal{L}_{2D}^{(p)}+\mathcal{L}_{S}^{(p)}$ Ours($R \rightarrow LR$)	100.1	115.2	153.6 147.5 134.2	61.5	69.8	82.3	

Goal task

Results: qualitative comparison



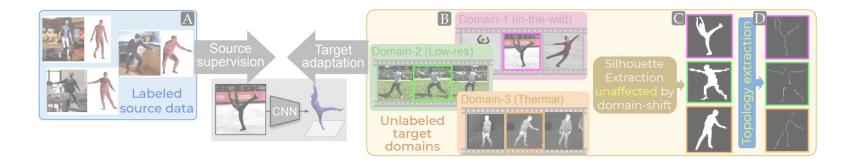


Qualitative results: adaptation from Synthetic to Real

Summary

- We propose a self-supervised domain adaptation framework that relies only on silhouette supervision.
- We develop a series of convolution-friendly and differentiable spatial transformations in order to disentangle a topological-skeleton representation from raw silhouettes.
- We devise a Chamfer-inspired spatial alignment loss via distance map computation, effectively avoiding any gradient hindering spatial-to-pointset conversion.

A step towards next generation deployment friendly (i.e. self-adaptive) human mesh recovery systems.



Thank You!

Aligning Silhouette Topology for Self-Adaptive 3D Human Pose Recovery

> Please check our project page for more details https://sites.google.com/view/align-topo-human