

Non-local Latent Relation Distillation for Self-Adaptive 3D Human Pose Estimation

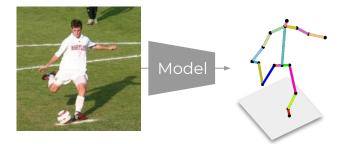
Jogendra Nath Kundu¹ Siddharth Seth¹ Anirudh Jamkhandi¹ Pradyumna YM¹ Varun Jampani² R. Venkatesh Babu¹ Anirban Chakraborty¹

¹Indian Institute of Science ²Google Research

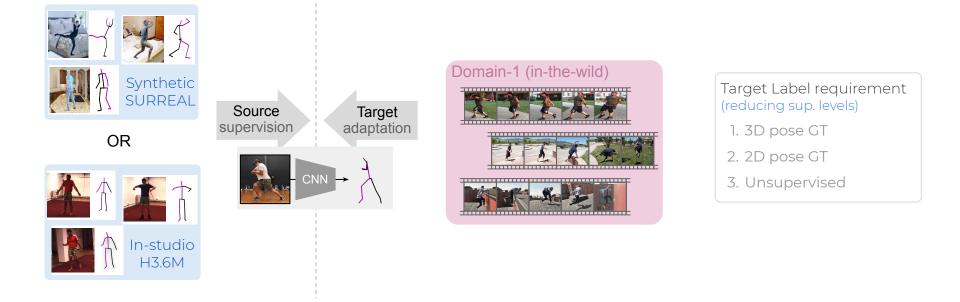
Approach

Goal task: 3D human pose estimation

- Inferring 3D human pose from monocular RGB images.
- Key step to several human centric applications such as human-computer interaction, sports analytics, driver assistance, etc.

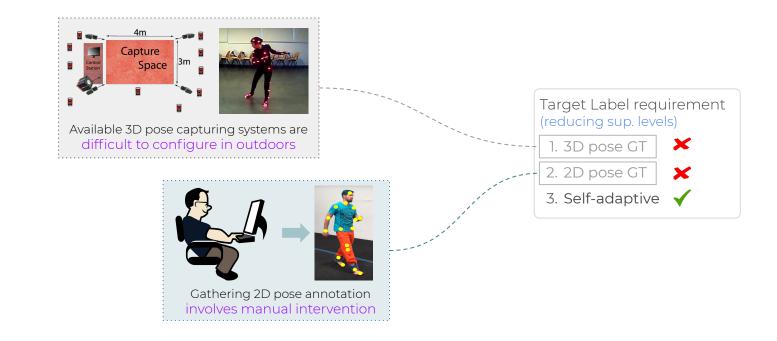


Domain adaptation: improving deployability of available solution



One must minimize the target label requirements for convenient deployment.

Domain adaptation: improving deployability of available solution



Self-adaptive: digress from any form of paired supervision or auxiliary cues.

We seek answers to the following.

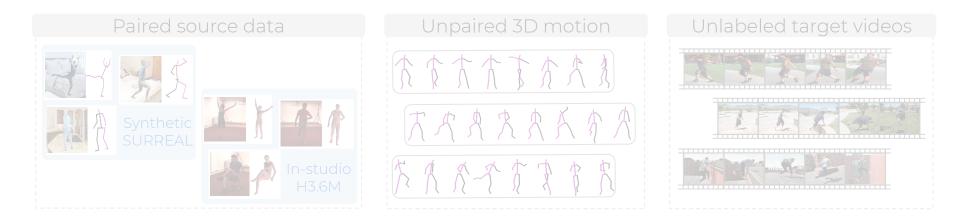
- Can we completely move away from paired supervision or auxiliary cues (multi-view or depth)?
- Can we develop a self-adaptive framework to avoid the curse of dataset-bias thereby aiming to attain superior cross-domain generalization?

We cast 3D pose learning as a self-supervised adaptation problem.

• We aim to transfer the task knowledge from a labeled source domain to a completely unlabeled target.

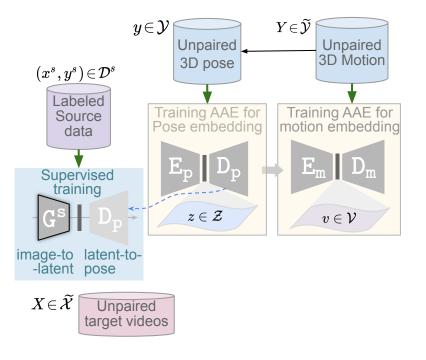
In the proposed setting we consider access to the following:

- 1. A labeled source dataset: either synthetic (SURREAL) or in-studio (Human3.6M) environment.
- 2. A dataset of unpaired 3D pose sequences.
- 3. A dataset of unlabeled video sequences from the target domain.



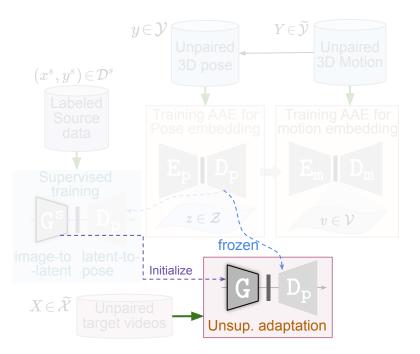
Overview: notations and modules

- Notations of the 3 datasets.
- We introduce 2 latent embeddings (learned via adv. auto-encoder)
 a) Pose embedding
 b) Motion embedding
- Image-to-pose inference is carried out via:
 - a) Image-to-latent
 - b) Latent-to-pose
- Supervised pre-learning of G^s (uses D_p as the latent-to-pose mapping)



Overview: notations and modules

- Notations of the 3 datasets.
- We introduce 2 latent embeddings (learned via adv. auto-encoder)
 a) Pose embedding
 - b) Motion embedding
- Image-to-pose inference is carried out via:
 a) Image to latent
 - b) Latent-to-pose
- Supervised pre-learning of G^s (uses D_p as the latent-to-pose mapping)



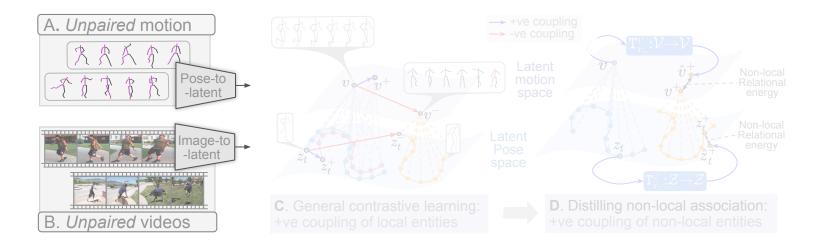
Objective: Train image-to-latent **G** on unpaired target image sequences.

Approach: Distilling local neighborhood relations via contrastive learning

- a) Lower-order contrastive (operating on pose-space)
- b) Higher-order contrastive (operating on motion-space)

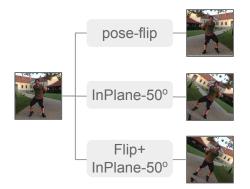
+ve coupling: pose-invariant image augmentations-ve coupling: random unrelated pose

Why to use motion embedding when the goal task is to realize an image-to-pose mapping?



What are non-local relations?

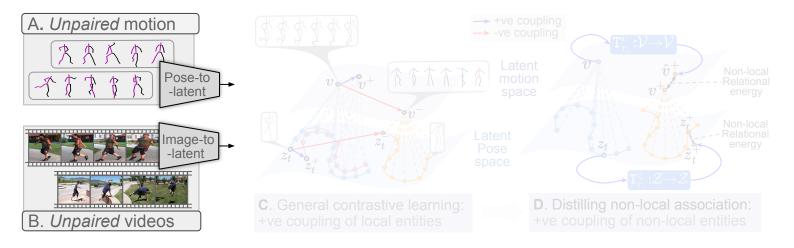
- Non-local pose relations
- Non-local motion relations



Approach: Distilling non-local relations via equivariance consistency

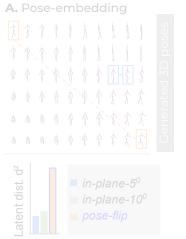
- Unlike contrastive relations non-local positive couplings characterize long-range latent pose/motion interactions.
- We propose to distill non-local relations via pre-learned relation transformer networks.

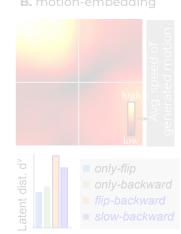
The equivariance consistency aims to preserve the equivariance of higher order spatio-temporal relations between the two modalities as a means to perform the cross-modal alignment.

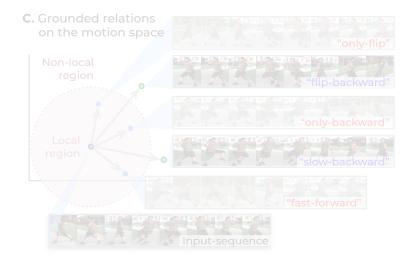


What makes non-local relations more effective?

- Quantifying non-localness via latent-distance
- We show that relations coupling diverse samples (long-range interactions) lead to better cross-modal alignment

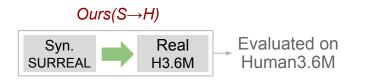






Approach

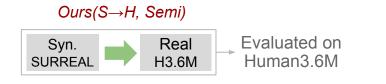
Results: adaptation from Synthetic to Real



Training	Methods	PA-MPJPE ↓	$\mathbf{MPJPE}\downarrow$
Full (3D)	Chen <i>et al.</i> [10]	82.7	-
	Martinez et al. [44]	47.7	
	Li et al. [37]	38.0	
Sup.	Xu et al. [79]	36.2	45.6
	Chen et al. [14]	32.7	47.3
S	Mitra <i>et al.</i> [48]		120.9
	Li et al. [38]	66.5	
Semi-sup.	Rhodin <i>et al.</i> [60]	65.1	
(sup. on	Kocabas et al. [33]	60.2	
agai	nst unsupervised prior-arts		
	$Ours(S \rightarrow H, Semi)$	48.2	57.6
Unsup.	Kundu et al. [36]	99.2	-
	$Ours(S \rightarrow H)$	86.2	97.8

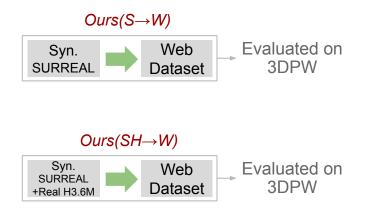
Approach

Results: adaptation from Synthetic to Real



Training	Methods	PA-MPJPE ↓	MPJPE \downarrow
	Chen <i>et al</i> . [10]		
Full (3D)	Martinez et al. [44]	47.7	
	Li et al. [37]	38.0	
agains	rvised pri	or-arts	
	Chen <i>et al</i> . [14]	32.7	47.3
Semi-sup. (sup. on S1)	Mitra <i>et al</i> . [48]	90.8	120.9
	Li et al. [38]	66.5	88.8
	Rhodin et al. [60]	65.1	-
	Kocabas et al. [33]	60.2	-
	Iqbal <i>et al</i> . $[27]^{(MV)}$	51.4	62.8
	$Ours(S \rightarrow H, Semi)$	48.2	57.6
Unsup.	Kundu et al. [36]		
	$Ours(S \rightarrow H)$	86.2	

Results: adaptation from Synthetic to Real



against prior-arts on **unseen** 3DPW

Training	Methods	PA-MPJPE ↓
Full (3D)	Arnab <i>et al.</i> [3]*	77.2
Supervision	Sun <i>et al</i> . [69]*	69.5
Direct Transfer	Martinez et al. [44] ⁺	157.0
	Dabral <i>et al.</i> $[15]^+$	92.3
	Kanazawa <i>et al</i> . [30]*	80.1
	Doersch <i>et al</i> . [16]*	82.4
	Kanazawa <i>et al</i> . [29]*+	76.7
	$Ours(S \rightarrow W)$	79.3
	$Ours(SH \rightarrow W)$	72.1

Ablation experiments

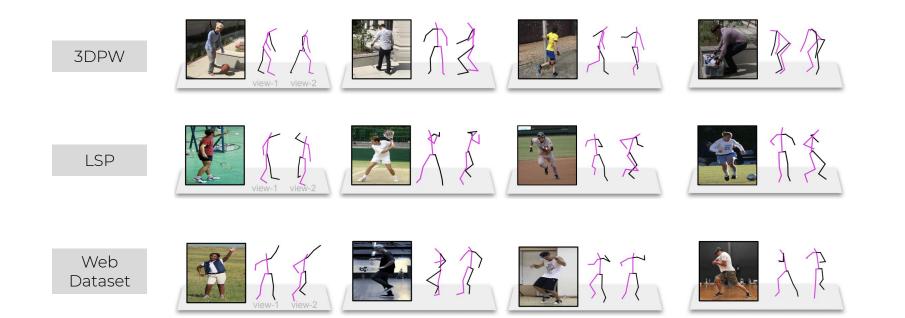
Modules Involved:

- G Image-to-latent model
- D_p Frozen pose decoder
- E_m Frozen motion encoder
- T₁^z Flip+InPlane-50°
- T₁^v Flip-backward+InPlane-50°
- T_2^{v} slow-backward

Ablation study on Human3.6M

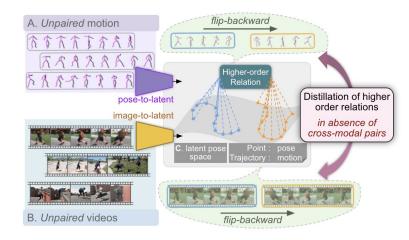
Ablation	Modules Involved	MPJPE ↓
Source-only	G, D _p	209.6
+ \mathcal{L}_{LCR}	G, D _p	193.4
+ \mathcal{L}_{HCR}	+E _m	172.1
+ \mathcal{L}_1^z	$+T_1^z$	139.7
+ \mathcal{L}_1^v	$+T_1^v$	91.8
+ \mathcal{L}_2^v	$+T_2^v$	86.2

Qualitative Results: adaptation from Synthetic to Real



Summary

- Our cross-modal alignment technique aligns the learned representations from two diverse modalities.
- Higher-order relations operating in motion space couple many entities → better cross modal alignment
- Non-local relations couple entities beyond structural neighborhood unlike in general contrastive learning.
- Latent distance objectively quantifies **non-localness** to select the most effective relation set.



Thank You!

Non-local Latent Relation Distillation for Self-Adaptive 3D Human Pose Estimation

Please check our project page for more details

https://sites.google.com/view/sa3dhp