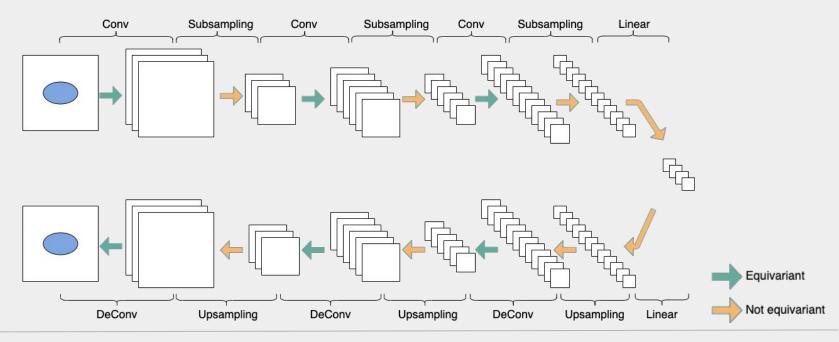
Group Equivariant Subsampling

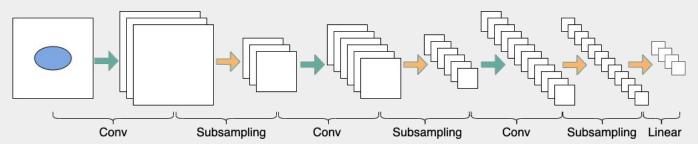
Jin Xu, Hyunjik Kim, Tom Rainforth, Yee Whye Teh

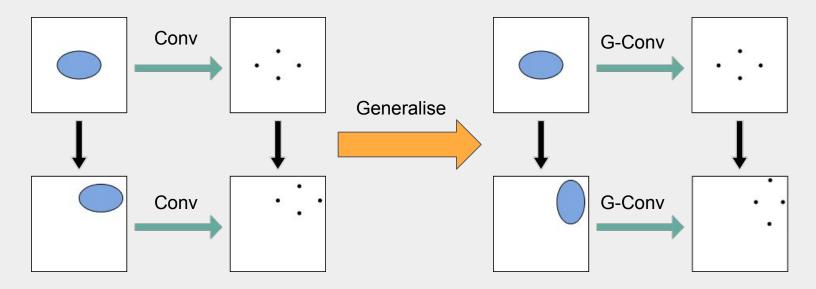
35th Conference on Neural Information Processing Systems

Convolutional Autoencoders



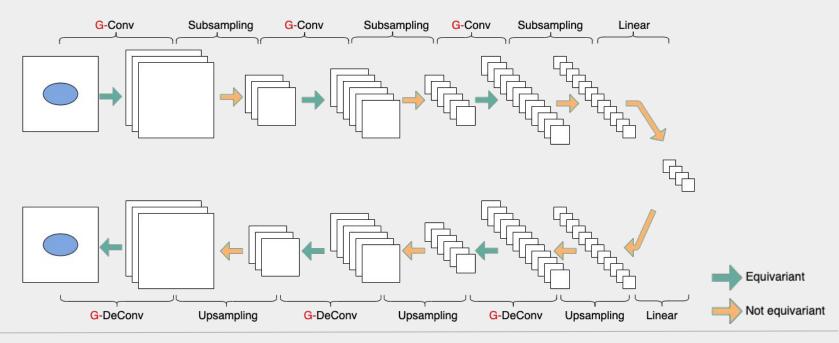
Convolutional Classifiers



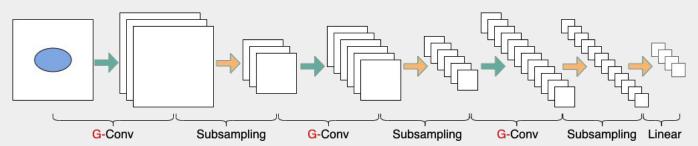


Cohen, T., & Welling, M. (2016, June). Group equivariant convolutional networks. In International conference on machine learning (pp. 2990-2999). PMLR.

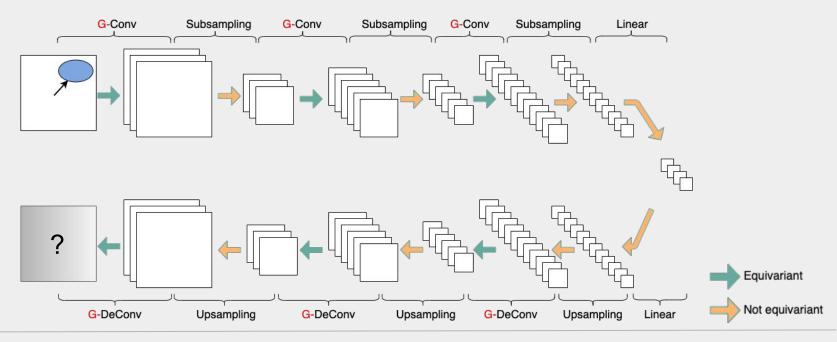
G-Convolutional Autoencoders



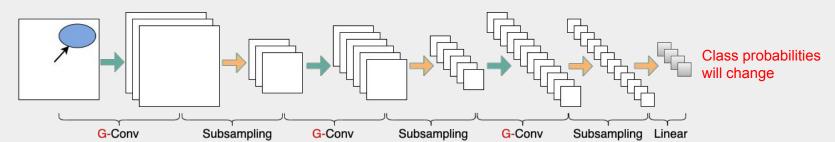
G-Convolutional Classifiers



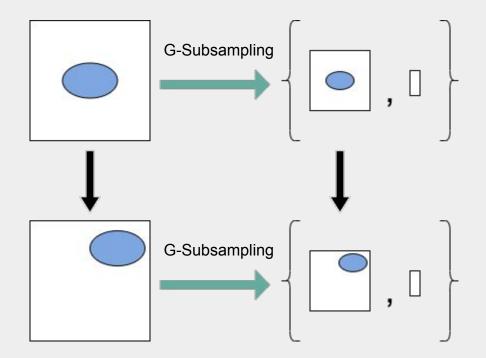
G-Convolutional Autoencoders



G-Convolutional Classifiers

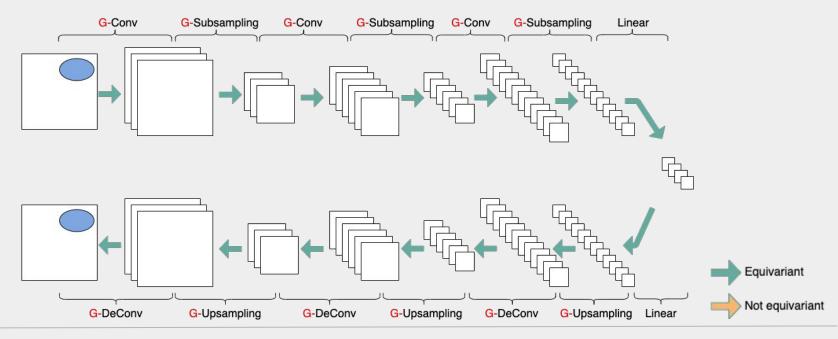


Group Equivariant Subsampling/Upsampling

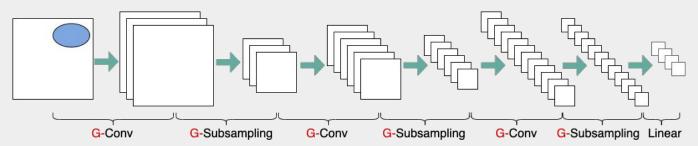


In this work, we propose group equivariant subsampling/upsampling (G-subsampling/G-upsampling) layers.

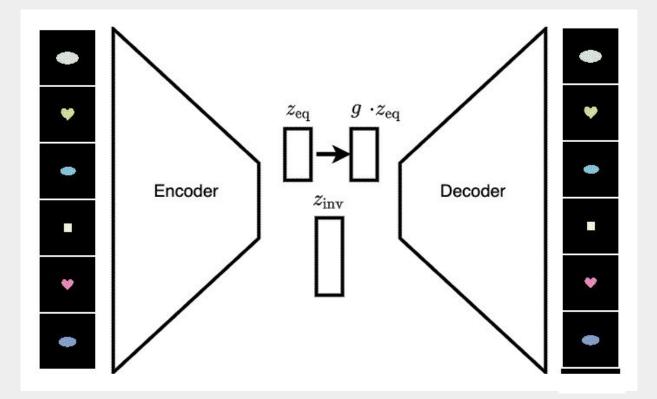
Group Equivariant Autoencoders



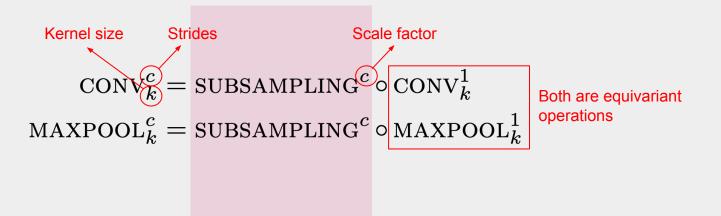
Group Invariant Classifiers



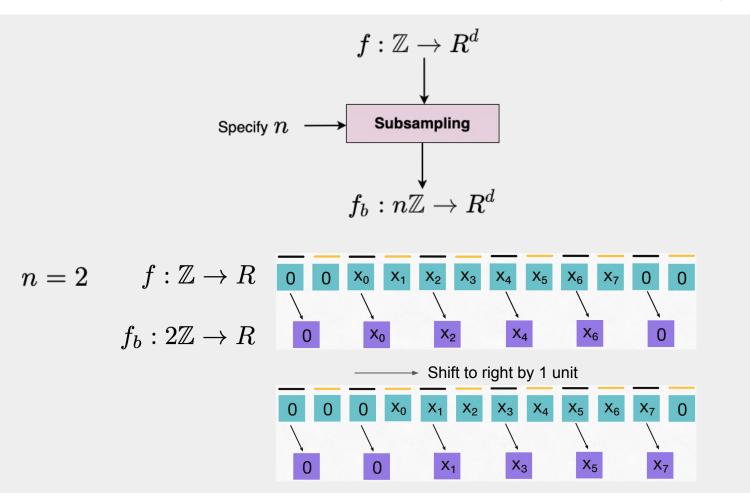
Application: Group Equivariant Autoencoders (GAEs)



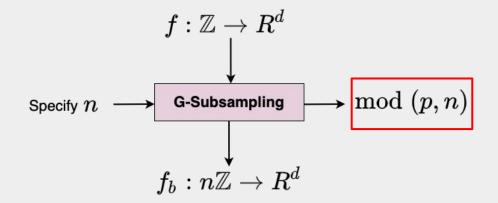
Max-Pooling & Strided Convolutions



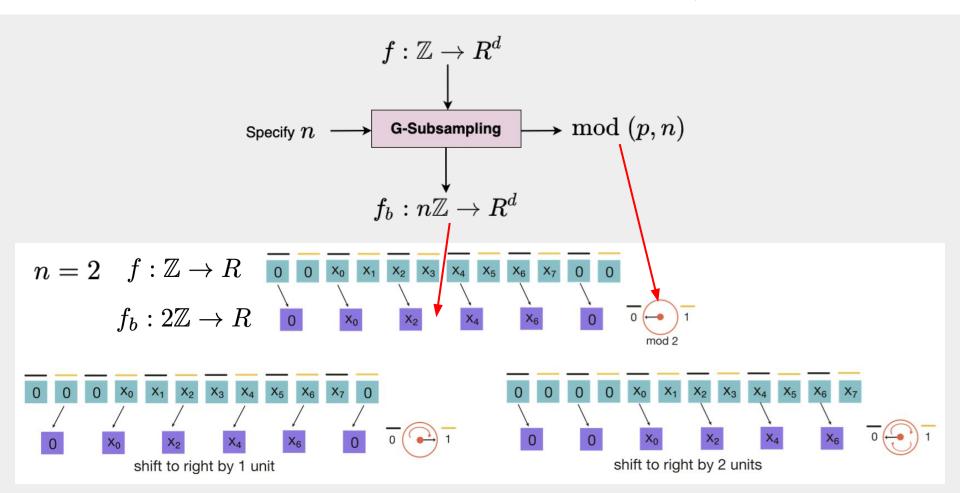
1D Translation Case of Conventional Subsampling



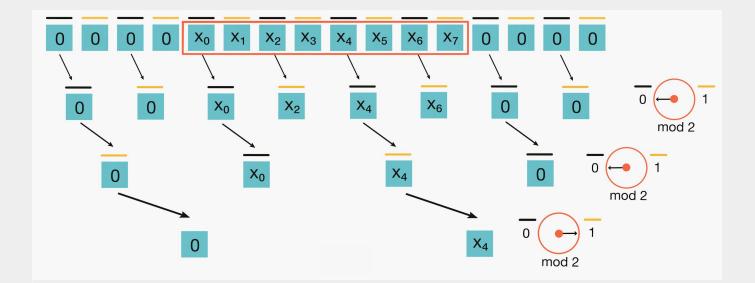
1D Translation Case of G-Subsampling



1D Translation Case of G-Subsampling

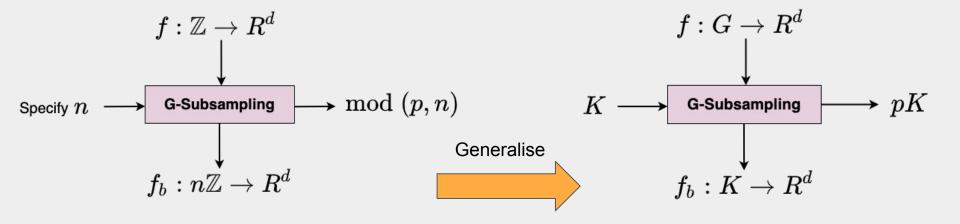


Multiple Layers of G-Subsampling

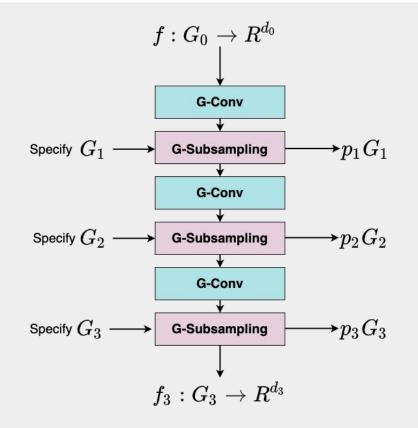


(Equivariant convolutional layers inserted between subsampling layers are omitted in this illustration.)

General Case of G-Subsampling



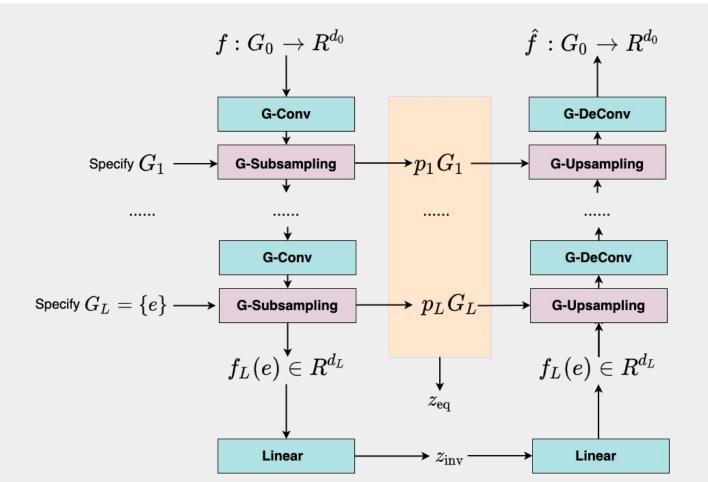
Multiple Layers of G-Subsampling



 G_0, G_1, G_2, G_3 is a sequence of nested subgroups.



Application: Group Equivariant Autoencoders (GAEs)



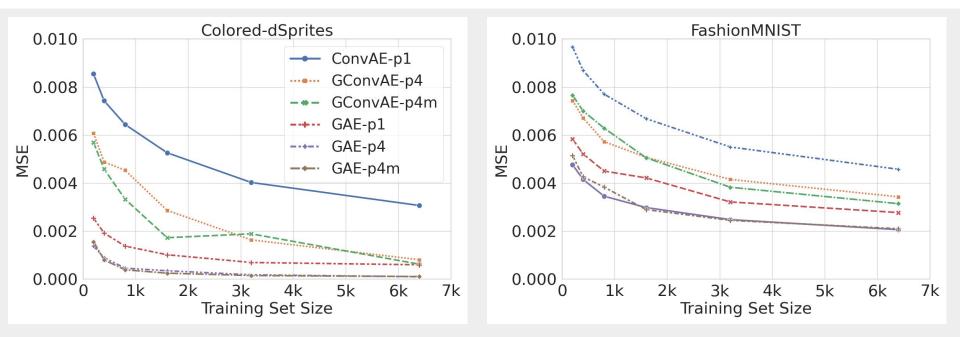
Variants of Autoencoders in Comparison

Model	ConvAE-p1	GConvAE-p4	GConvAE-p4m	GAE-p1	GAE-p4	GAE-p4m
Conv Layer	Conv (p1)	GConv (p4)	GConv (p4m)	Conv (p1)	GConv (p4)	GConv (p4m)
Subsampling Layer	Strides in Conv	Strides in Conv	Strides in Conv	G-Subsampling (p1)	G-Subsampling (p4)	G-Subsampling (p4m)

Wallpaper groups:

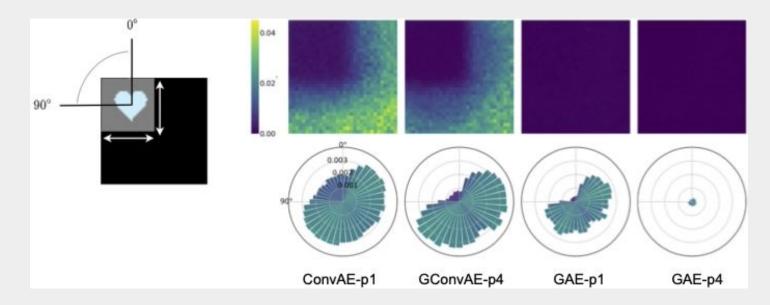
- p1: All 2D integer translations
- p4: All compositions of 2D integer translations and rotations by a multiple of 90 degrees.
- p4m: All compositions of elements in p4 and the mirror reflection

GAE Reconstruction Error on Single Object Datasets



Model	ConvAE-p1	GConvAE-p4	GConvAE-p4m	GAE-p1	GAE-p4	GAE-p4m
Conv Layer	Conv	GConv (p4)	GConv (p4m)	Conv	GConv (p4)	GConv (p4m)
Subsampling Layer	Strides in Conv	Strides in Conv	Strides in Conv	G-Subsampling (p1)	G-Subsampling (p4)	G-Subsampling (p4m)

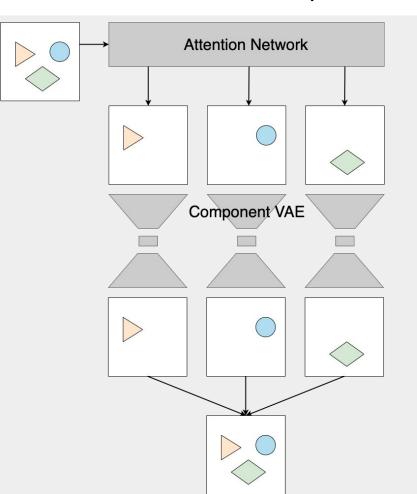
Generalisation to out-of-distribution object locations and poses



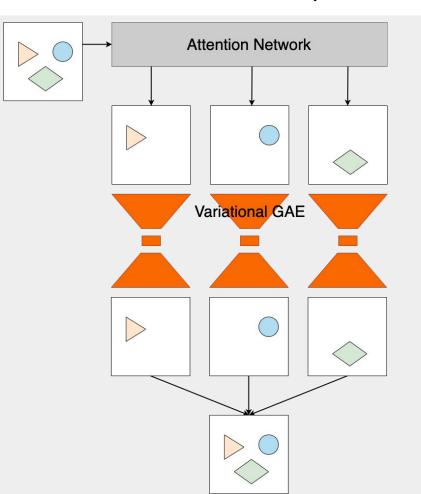
During training, we constrain shapes to be in the top-left quarter, and the orientation to be always less than 90 degrees.

On the right, we compare the error of reconstructions of different models generalise on objects at unseen locations in the first row, and how they generalise to unseen orientations in the second row.

Unsupervised Scene Decomposition with MONet



Unsupervised Scene Decomposition with MONet



Experiments: Multiple Objects

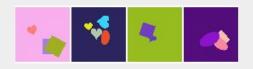


Table 1: Reconstruction error MSE ($\times 10^{-3}$) (mean(stddev) across 5 seeds) on multi-object datasets

Dataset	C	Multi-dSprites		CLEVR6		
Training Set Size	3200	6400	12800	3200	6400	12800
						$0.546(0.056)^1$
MONet-GAE-p1	0.659(0.103)	0.359(0.025)	0.264(0.042)	0.473(0.064)	0.432(0.052)	0.388(0.016)
MONet-GAE-p4	0.563(0.195)	0.317(0.060)	0.231(0.067)	0.461(0.025)	0.414(0.022)	0.413(0.018)

Table 2: Foreground segmentation performance in terms of ARI (mean(stddev) across 5 seeds)

Dataset		Multi-dSprites		CLEVR6		
Training Set Size	3200	6400	12800	3200	6400	12800
MONet	0.597(0.022)	0.747(0.049)	0.891(0.009)	0.829(0.055)	0.878(0.023)	$0.865(0.033)^1$
MONet-GAE-p1						
MONet-GAE-p4	0.753(0.089)	0.833(0.072)	0.902(0.025)	0.878(0.055)	0.914(0.012)	0.910(0.011)

MSE: Measure the overall reconstruction quality, the lower the better.

ARI: Measure the (foreground) object segmentation performance, the higher the better.

Conclusions

- We have proposed subsampling/upsampling operations that preserve group equivariance.
- We have used the proposed layers to construct exact group equivariant autoencoders.
- We have shown that the proposed subsampling/upsampling layers can improve sample efficiency in both single-object and multi-object representation learning models.