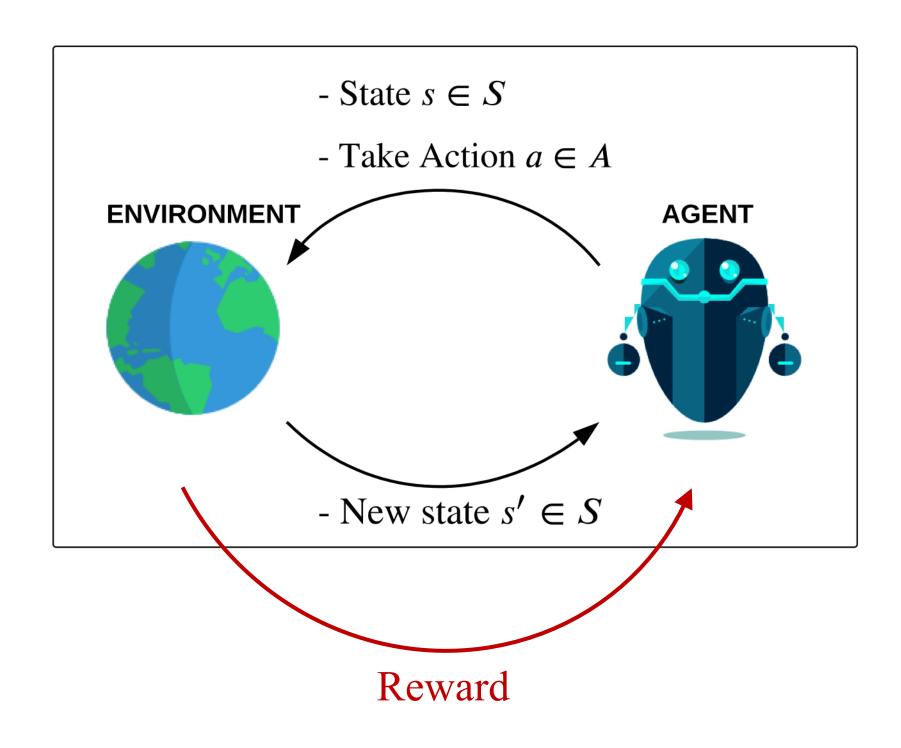


IQ-Learn: Inverse soft-Q learning for Imitation

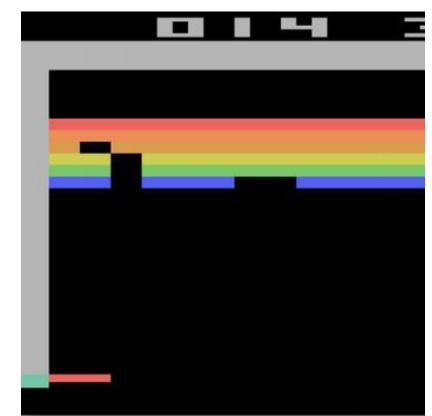
Divyansh Garg, Shuvam Chakraborty Chris Cundy, Jiaming Song, Stefano Ermon

Reinforcement Learning

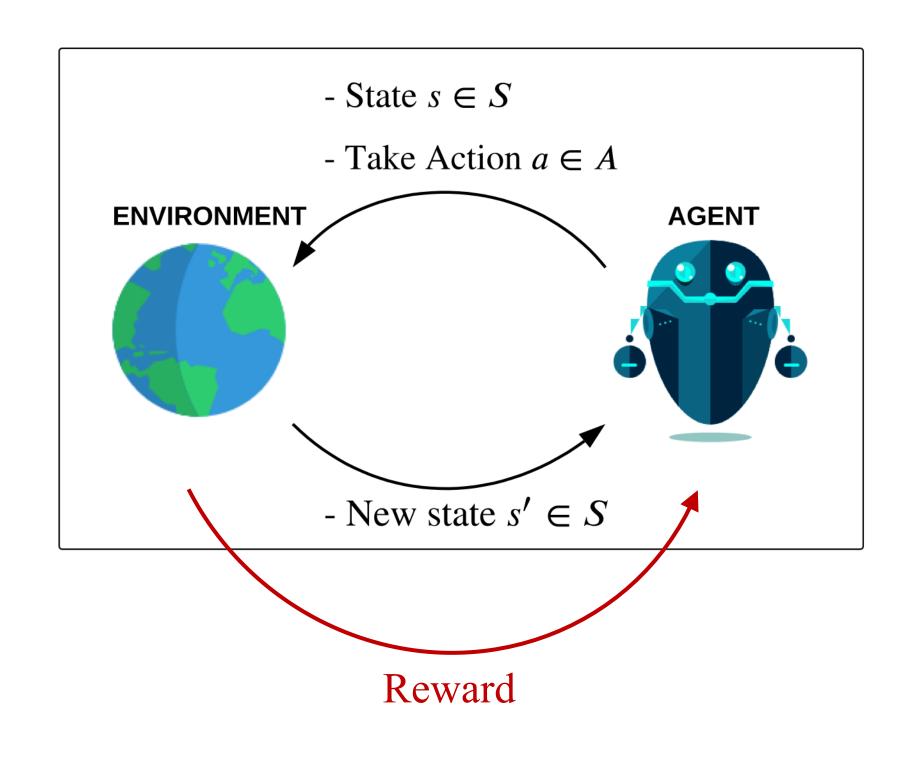


Input: High-dimensional observations

RL needs reward signal



Soft Q-Learning



 Goal: Learn an energy function Q to represent the policy

$$\pi(a|s) = rac{1}{Z_s} \exp(Q(s,a))$$

Reward Function
(R)

Reinforcement Learning
(RL)

Q-function
(Q)

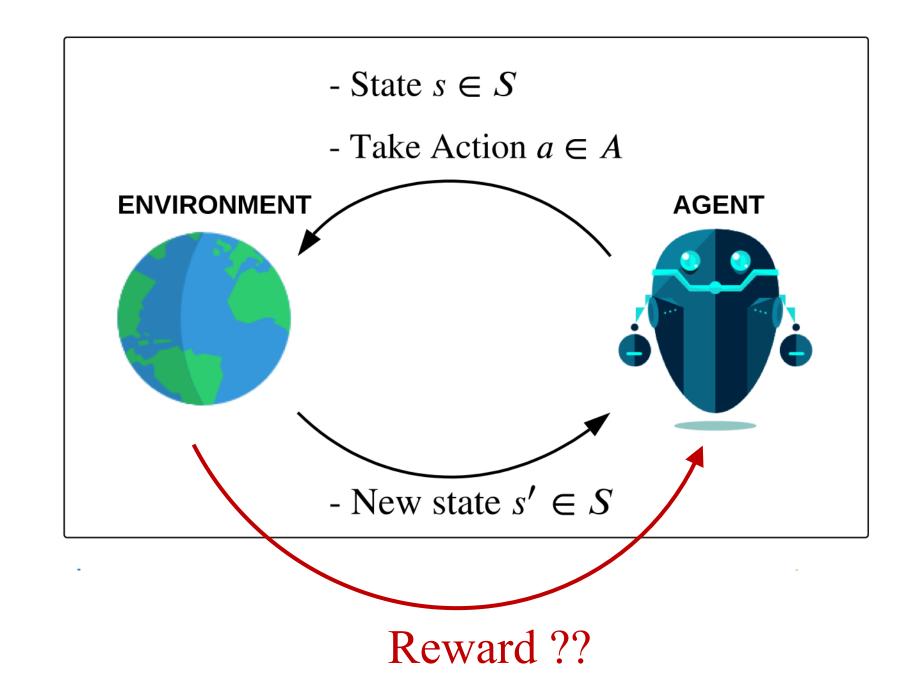
(Q)

Imitation Learning

- Goal: Learn reward function (R) or policy
- Input: Expert demonstrations

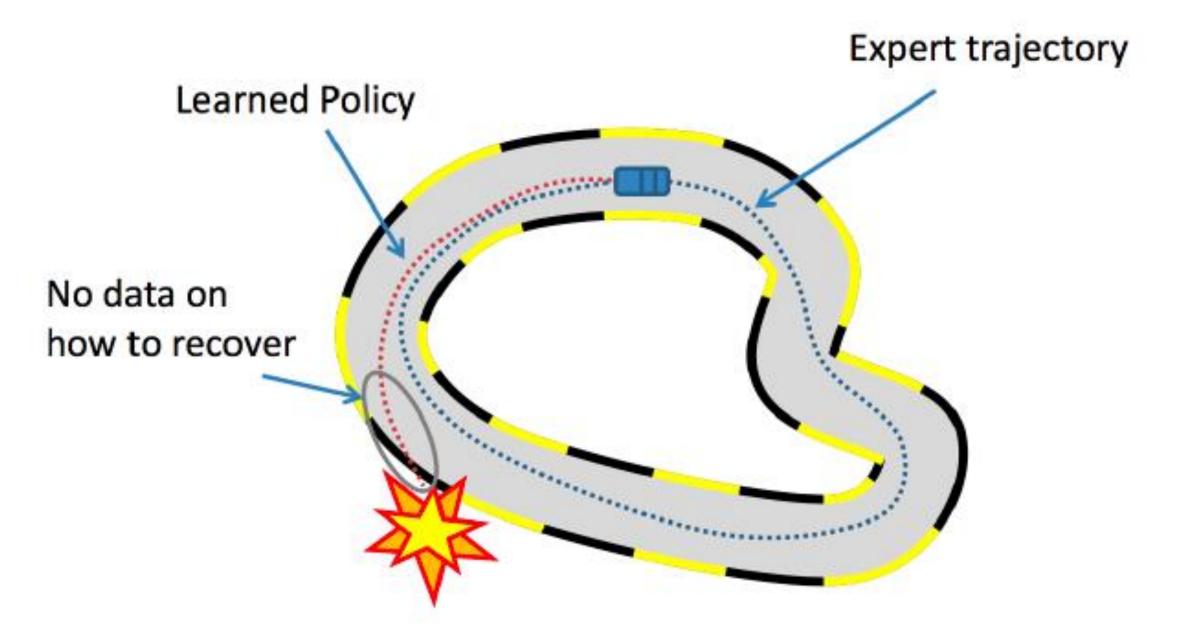
$$\{(s_0^i, a_0^i, s_1^i, a_1^i, \dots)\}_{i=1}^n \sim \pi_E$$

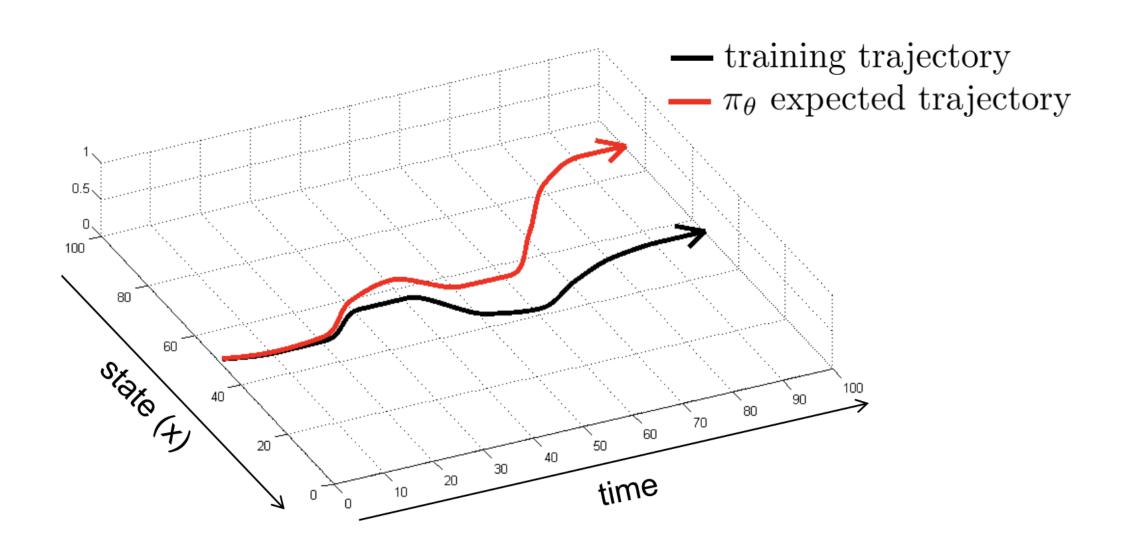
• Input: (Optional) Environment samples



Behavior Cloning







Inverse Reinforcement Learning

- Goal: Learn reward function (R) or policy
- Input: Expert demonstrations

$$\{(s_0^i, a_0^i, s_1^i, a_1^i, \dots)\}_{i=1}^n \sim \pi_E$$

• Input: (Optional) Environment samples

Learn a reward R such that

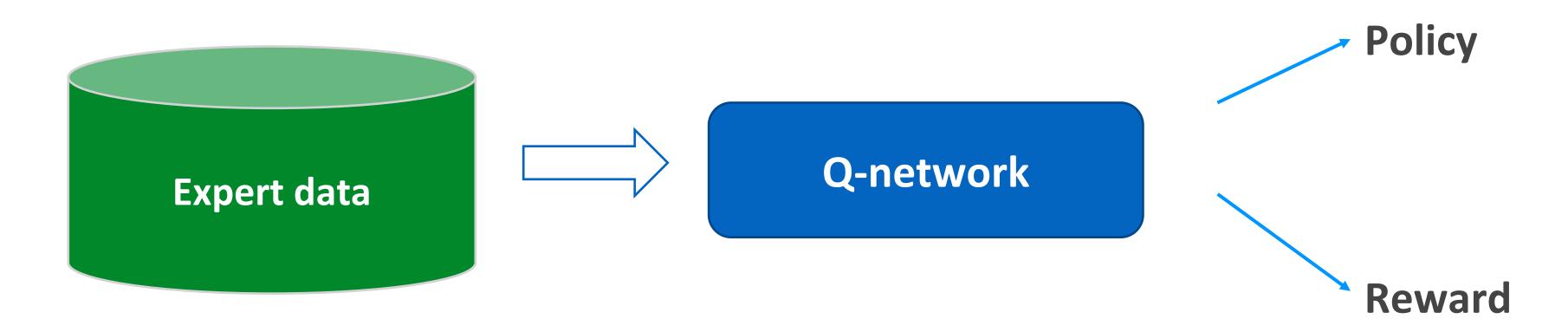
$$\pi_E = rgmax_\pi[r(s,a)]$$

Inverse Q Learning

- Goal: Learn reward function (R) or policy Learn a Q-function
- Input: Expert demonstrations

$$\{(s_0^i, a_0^i, s_1^i, a_1^i, \dots)\}_{i=1}^n \sim \pi_E$$

• Input: (Optional) Environment samples



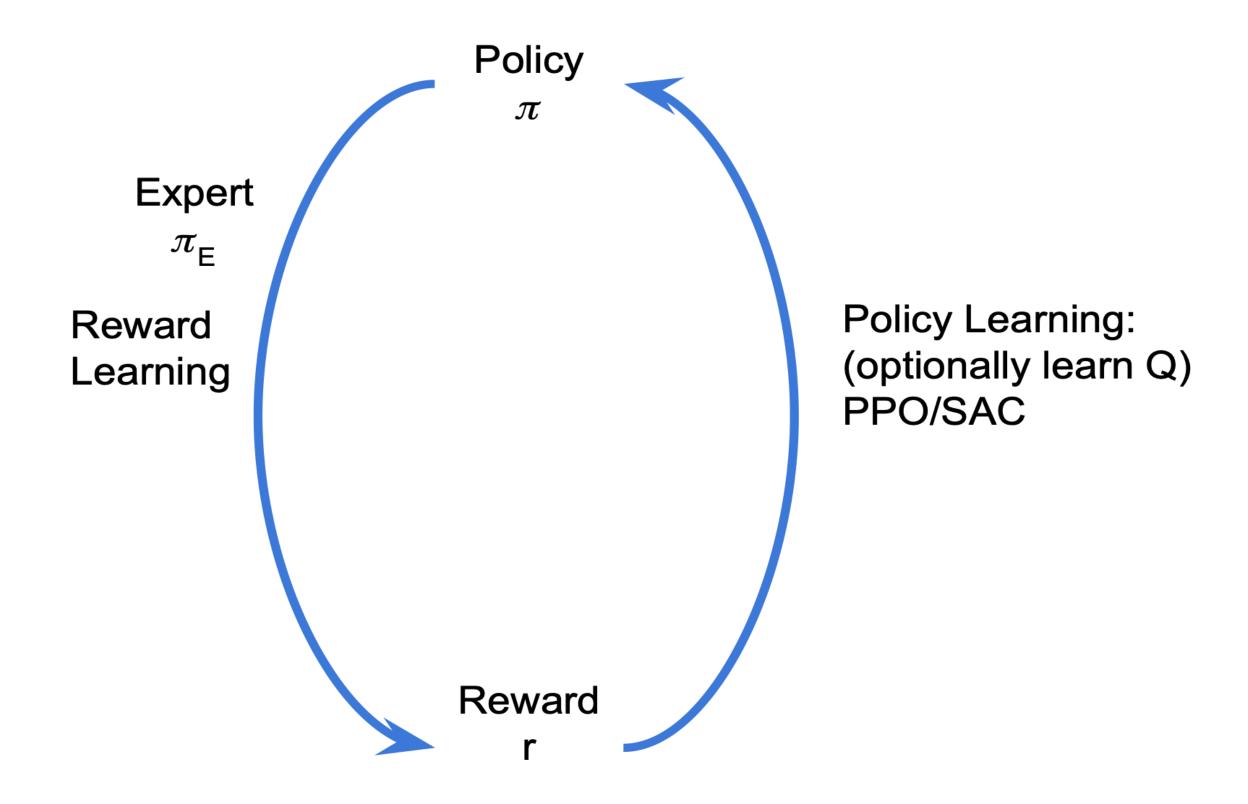
7

Inverse Q Learning

Equivalent to Inverse Reinforcement Learning

Much simpler to solve!!!

Inverse Q Learning



Adversarial Learning: GAIL/AIRL

Results: Offline IL

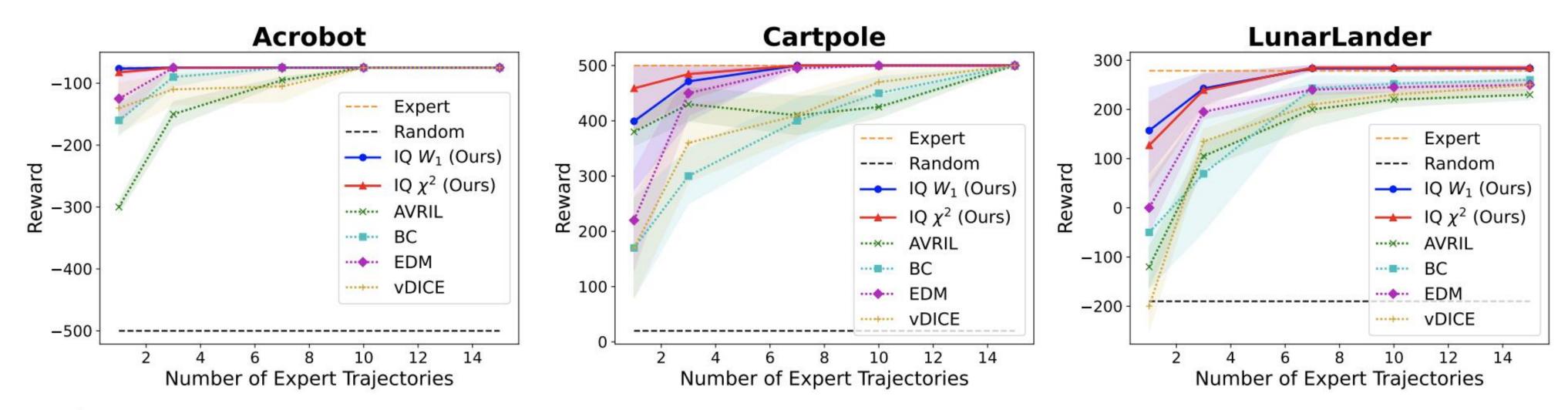
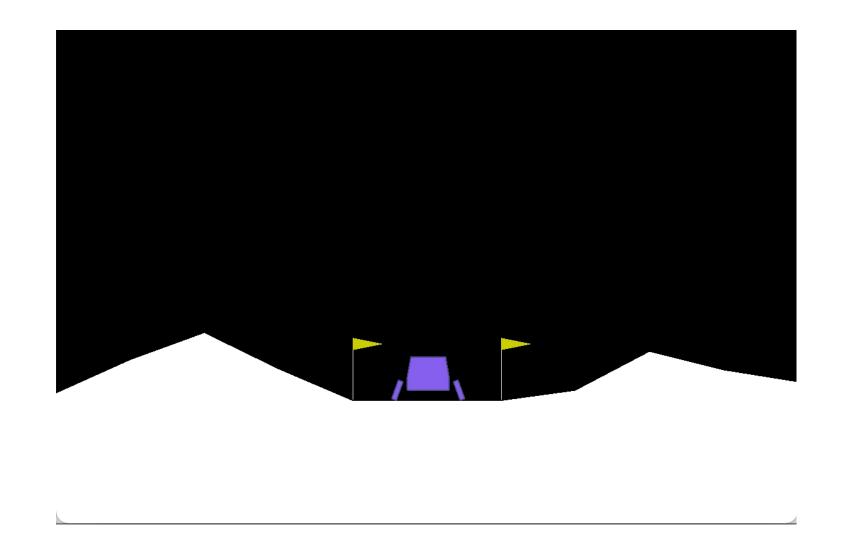


Figure 2: Offline IL results. We plot the average environment returns vs the number of expert trajectories.



Results: Atari

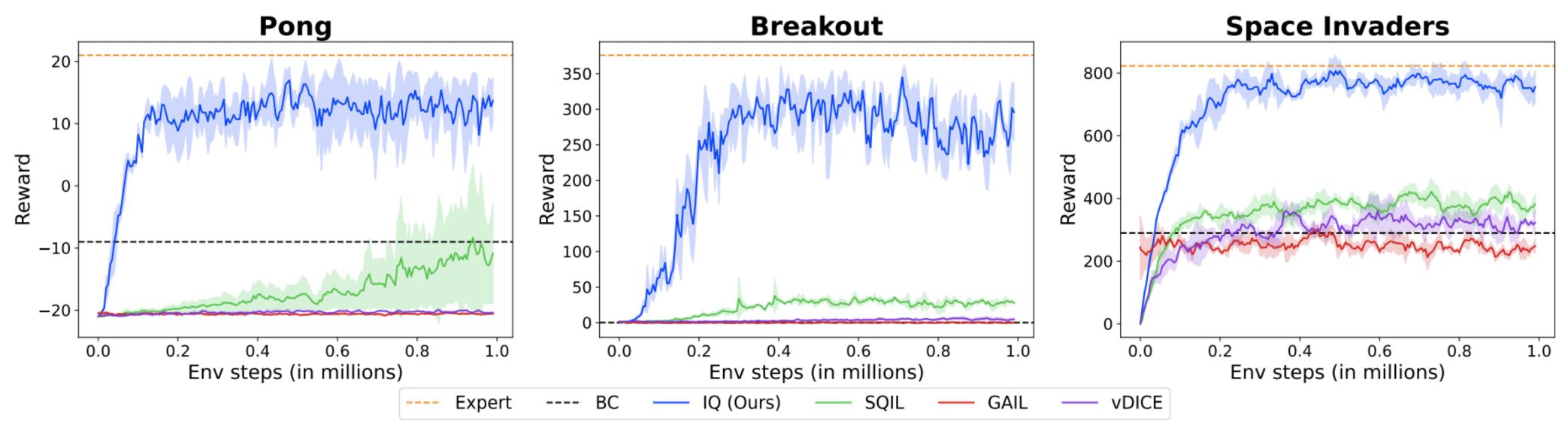
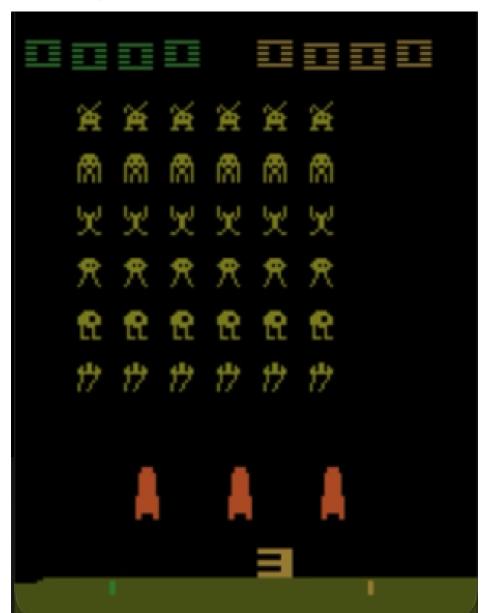


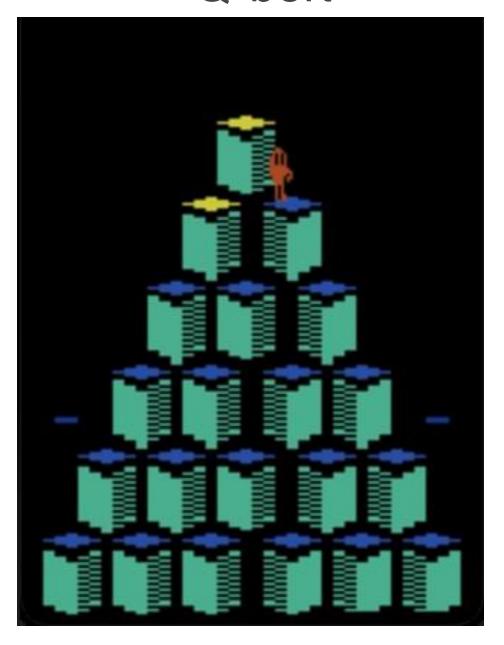
Figure 3: Atari Results. We show the returns vs the number of env steps. (Averaged over 5 seeds)

Pong

Space Invaders



Q*bert



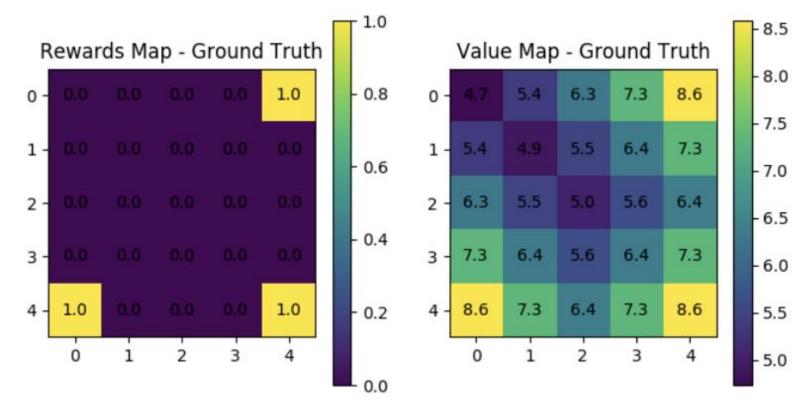
Results: Mujoco

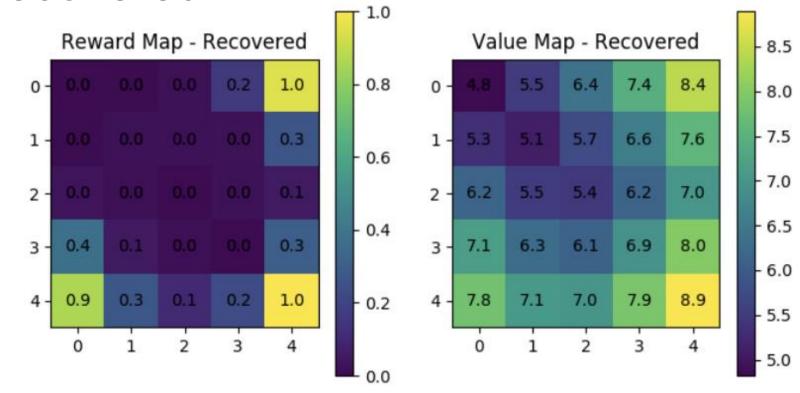
Table 3: Mujoco Results. We show our performance on MuJoCo control tasks using a single expert trajectory.

Task	GAIL	ValueDICE	IQ (Ours)	Expert
Hopper	3252.5	3312.1	3546.4	3532.7
Half-Cheetah	3080.0	3835.6	5076.6	5098.3
Walker	4013.7	3842.6	5134.0	5274.5
Ant	2299.1	1806.3	4362.9	4700.0

Recovered Rewards

Ground-truth





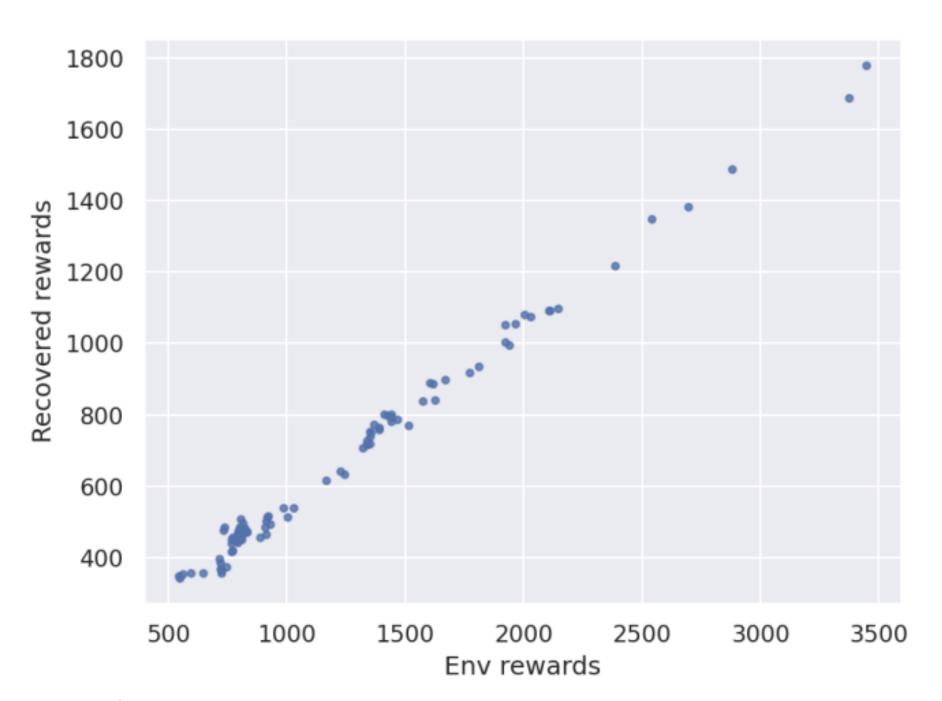


Figure 12: Hopper correlations

Figure 4: Reward Visualization. We use a discrete GridWorld environment with 5 possible actions: up, down, left, right, stay. Agent starts in a random state. (With 30 expert demos)

Extensions

- 1. Learning state-only reward functions
- 2. Imitation learning with only observations (ILO)

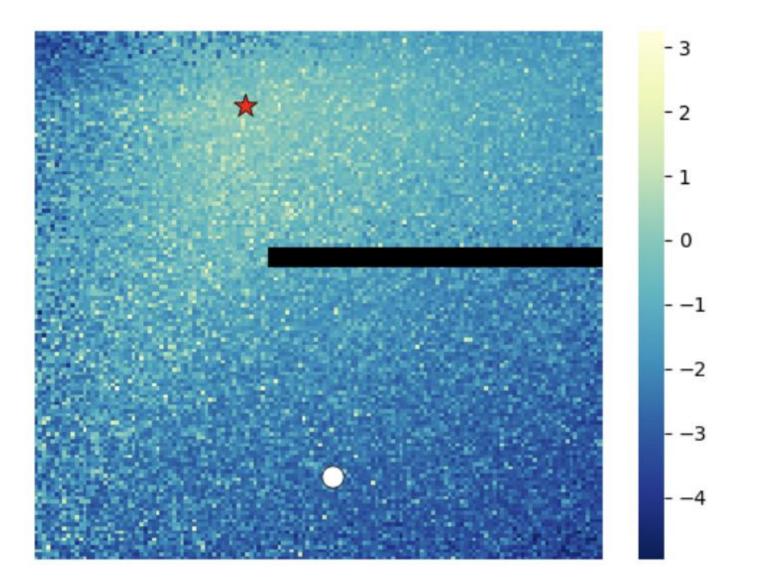


Table 6: **Results on ILO**. We show evironment returns using 1 and 10 expert demonstrations.

Env	1 demo	10 demos
CartPole	452 ± 50	485 ± 25
LunarLander	20 ± 102	220 ± 69
Hopper	2507 ± 345	3465 ± 51

Figure 5: State Rewards Visualization. We visualize the state-only rewards recovered on a continuous control point maze task. The agent (white circle) has to reach the goal (red star) avoiding the barrier on right.

Thank you

Paper

Code