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Newton’s method in composite optimization

Find: x∗ = argmin
x

f(x), for f(x) =

n∑
i=1

fi(x)

Newton step: pt =
[
∇2f(xt)︸ ︷︷ ︸

Ĥd×d Hessian HĤ

]−1 ∇f(xt)︸ ︷︷ ︸
Ĥd×1 gradientĤ

x∗

xt+1 = xt − µtptxt
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Newton’s method in composite optimization

Find: x∗ = argmin
x

f(x), for f(x) =

n∑
i=1

fi(x)

Newton estimate: p̂t =
[
∇2f̂(xt)︸ ︷︷ ︸

Hessian estimate Ĥ

]−1 ∇f(xt)︸ ︷︷ ︸
Ĥd×1 gradientĤ

x∗

xt+1 = xt − µtp̂txt
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Computing the Hessian

∇2f(x) =

n∑
i=1

∇2fi(x) =

Cost: O(nd2)︷ ︸︸ ︷
Af (x)>Af (x)

Example: Generalized Linear Model

f(x) =
1

n

n∑
i=1

`i(φ
>
i x),

∇2f(x) =
1

n

n∑
i=1

`′′i (φ
>
i x)φiφ

>
i

Af (x)

n

d
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Newton Sketch [PW17]

x̃t+1 = x̃t − µt
( Ã>t Ãt≈∇2f(xt)︷ ︸︸ ︷
Af (x̃t)

>S>t StAf (x̃t)
)−1∇f(x̃t)

Sketching matrix Stm

n

× Af (xt)

n

d

= Sketch Ãt
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Example 1: Gaussian Newton Sketch

Sketching matrix St has i.i.d. Gaussian entries

Pros

Strong convergence

Robust to the worst case

Cons

Computationally expensive

Sketching matrix St

s>i
i.i.d.∼ N (0, 1)

×

Af (xt)

Extension: Sub-gaussian embeddings, e.g., with i.i.d. random sign entries
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Example 2: Sub-Sampled Newton

Randomly select m rows of Af (xt)

Pros

Computationally cheap

Cons

Weaker convergence

Sensitive to the worst case

Sketching matrix St

s>i

1 non-zero per row

×

Af (xt)

Extension: Importance sampling, e.g., according to leverage scores
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LESS Embeddings: Fast Gaussian-like Sketches

LEverage Score Sparsified (LESS) Embeddings:

Leverage Score Sampling + Sparse Embedding Matrices

randomly sparsified

sub-gaussian entries
m

n

sampled using

leverage scores

× Af (x)

n

d

Introduced by [DLDM21] “Sparse sketches with small inversion bias”, COLT’21.
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Newton-LESS: Sparsity without trade-offs

s = 1Sampling

s = dLESS

s = nGaussian

s non-zeros per row
 Sketch Density

LESSSampling Gaussian

 Computational Cost

 Convergence Rate

Convergence Rate =

(
E
‖∆T ‖2

‖∆0‖2

)1/T

where ∆t = x̃t − x∗

Computational Cost = O(mds)︸ ︷︷ ︸
sketch

+O(md2)︸ ︷︷ ︸
Hessian

+ O(nd)︸ ︷︷ ︸
gradient
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Same plot on real data
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(a) High-coherence synthetic
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(b) Musk dataset
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(c) CIFAR-10 dataset
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(d) WESAD dataset
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Main result: Problem-independent local convergence

Assumptions: Hessian H = ∇2f(x∗) is positive definite and f is
(a) self-concordant, or (b) has a Lipschitz continuous Hessian.

Sketching matrix: Gaussian, sub-Gaussian, or LESS embedding
with sketch size m at least Cd log(dT/δ)

Theorem

There is a neighboorhood U containing x∗ such that if x̃0 ∈ U ,

then we can choose step size µt so that:(
Eδ
‖∆T ‖2H
‖∆0‖2H

)1/T

≈ε
d

m
for ε = O

( 1√
d

)
Eδ is expectation conditioned on a 1− δ probability event;

‖v‖H =
√
v>Hv; a ≈ε b means that (1− ε) · b ≤ a ≤ (1 + ε) · b
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Main result: Discussion

Same problem-independent ( dm)T convergence rate for

LESS and Gaussian (down to lower order terms)

Simple analytic expression for the optimal step size µt:

x̃t+1 = x̃t − (1− d
m)︸ ︷︷ ︸

µt

p̂t, when E[p̂t] ≈ pt.

Extension to regularized objectives f(x) = f0(x) + g(x):

the convergence rate becomes dimension-independent,(
Eδ
‖∆T ‖2H
‖∆0‖2H

)1/T

≤ε
deff

m
for deff = tr

(
∇2f0(x∗)∇2f(x∗)−1

)
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Comparison to prior work

Under quadratic objectives f(x) = ‖Ax− b‖2,

the convergence rate ( dm)T was previously shown only for:

1 strictly Gaussian embeddings [LP19],

2 Subsampled Randomized Hadamard Transform (SRHT) in

a high-dimensional asymptotic limit [LLDP20].

For general objectives and fast sketching methods, e.g.:

1 Row sampling (Leverage Scores) [DMM06],

2 Sparse sketches (CountSketch and SJLT) [CW17],

3 Trigonometric sketches (SRHT and SRTT) [AC09],

the best known rate is
(
C log(dT/δ) · dm

)T
[PW17].

Note: Extra constant and logarithmic factors in the bound
means no analytic expressions for the optimal step size µt
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Analysis: Two approaches

1 Subspace embedding (most prior work)

Standard approximation guarantee for sketching methods

Leads to subopotimal convergence rates:
(
C log(dT/δ) · d

m

)T
Af (x̃t)

>S>t StAf (x̃t) ≈η ∇2f(x̃t).

2 Method of inverse moments (this work)

Originally proposed for quadratic objectives [LP19]

Leads to precise convergence rates and optimal step sizes

Requires inverse moments of the sketched Hessian

E
[(

Af (x̃t)
>S>t StAf (x̃t)

)−k]
for k = 1, 2
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Comparison of sketching methods

1 Subspace embedding

2 Method of inverse moments

Sub-Gaussian Embedding

Sketching S

s>i
×

Data A leverage scores

i-th leverage score: `i(A) = i-th diagonal entry of AA†
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Comparison of sketching methods

1 Subspace embedding

2 Method of inverse moments x

Leverage Score Sampling [DMM06]

Sketching S

s>i

1 non-zero per row

×

Data A leverage scores
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Comparison of sketching methods

1 Subspace embedding

2 Method of inverse moments x

Uniform Sparsification [CW13]

Sketching S

s>i

n/d non-zeros per row

×

Data A leverage scores

i-th leverage score: `i(A) = i-th diagonal entry of AA†
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Comparison of sketching methods

1 Subspace embedding

2 Method of inverse moments

Leverage Score Sparsification [DLDM21]

Sketching S

s>i

d non-zeros per row

×

Data A leverage scores
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Implementing LESS Embeddings

1 Worst-case implementation (LESS)

Preprocessing cost: O(nnz(A) log n+ d3 log d)

Approximating leverage scores `i(A) [DMIMW12]

Sketching cost: O(md2)

Sparse matrix multiplication SA

Cost = O(nnz(A) log n+md2)

2 Practical implementation (LESS-uniform)

Use a uniformly sparsified sketch with αd non-zeros per row

If α ≥ n
d maxj `j(A), then we recover theoretical guarantees

Cost = O(αmd2)

nnz(A) = number of non-zeros in matrix A.
15 / 20



Experiments: Quadratic objective
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(a) High-coherence synthetic matrix
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(b) WESAD dataset

We use sketch size m = 4d, and LESS-uniform has d non-zeros per row.
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Experiments: Logistic regression

0 100 200 300 400 500 600 700 800
Wall cl ck time

10−10

10−8

10−6

10−4

10−2

100

Er
r 
r

SGD
GD
AGD
Newt n
BFGS
NS LESS unif rm
NS Gaussian
NS RRS
NS SRHT

(a) WESAD dataset

0 20 40 60 80 100
Wall clock  ime

10−10

10−8

10−6

10−4

10−2

100

Er
ro

r

SGD
GD
AGD
New on
BFGS
NS LESS uniform
NS Gaussian
NS RRS
NS SRHT

(b) CIFAR-10 dataset
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(c) Musk dataset
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min
x∈Rd

1

n

n∑
i=1

log(1 + exp(−bia>
i x)) +

λ

2
‖x‖22 .

We use sketch size m = d/2. Bottom plots report the CPU and GPU

wall-clock times to reach a 10−6 accurate solution.
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Conclusions

Newton-LESS: Sparsification without trade-offs

1 Per-iteration efficiency of Sub-Sampled Newton

2 Same convergence rate as Gaussian Newton Sketch

Sparse sketching can beat Sub-Sampling...

1 ...in real-world optimization tasks

2 ...on a variety of hardware platforms

LESS Embeddings: Fast Gaussian-like sketches

1 Correcting the bias in distributed optimization [DLDM21]

2 Precise convergence rates and optimal step sizes (this work)

Code available at: https://github.com/lessketching/newtonsketch
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