Learning to Synthesize Programs as Interpretable and Generalizable Policies

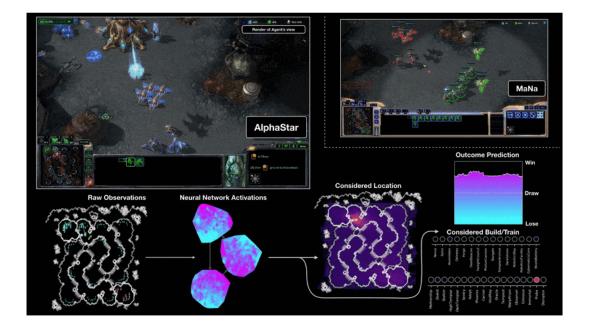
Dweep Trivedi*, Jesse Zhang*, Shao-Hua Sun*, Joseph J Lim

University of Southern California

Advances in Deep Reinforcement Learning

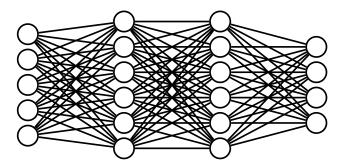
Autonomous Driving

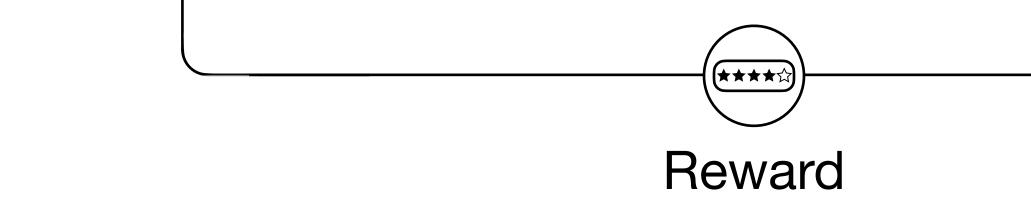
Robotics



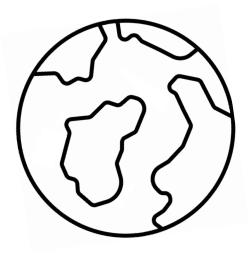
Game AI

Deep Neural Network



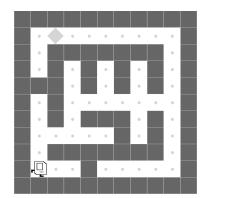


Environment

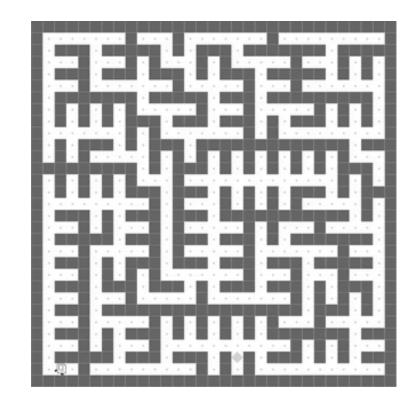


Issues with Deep Reinforcement Learning (DRL)

Generalization



Simple task



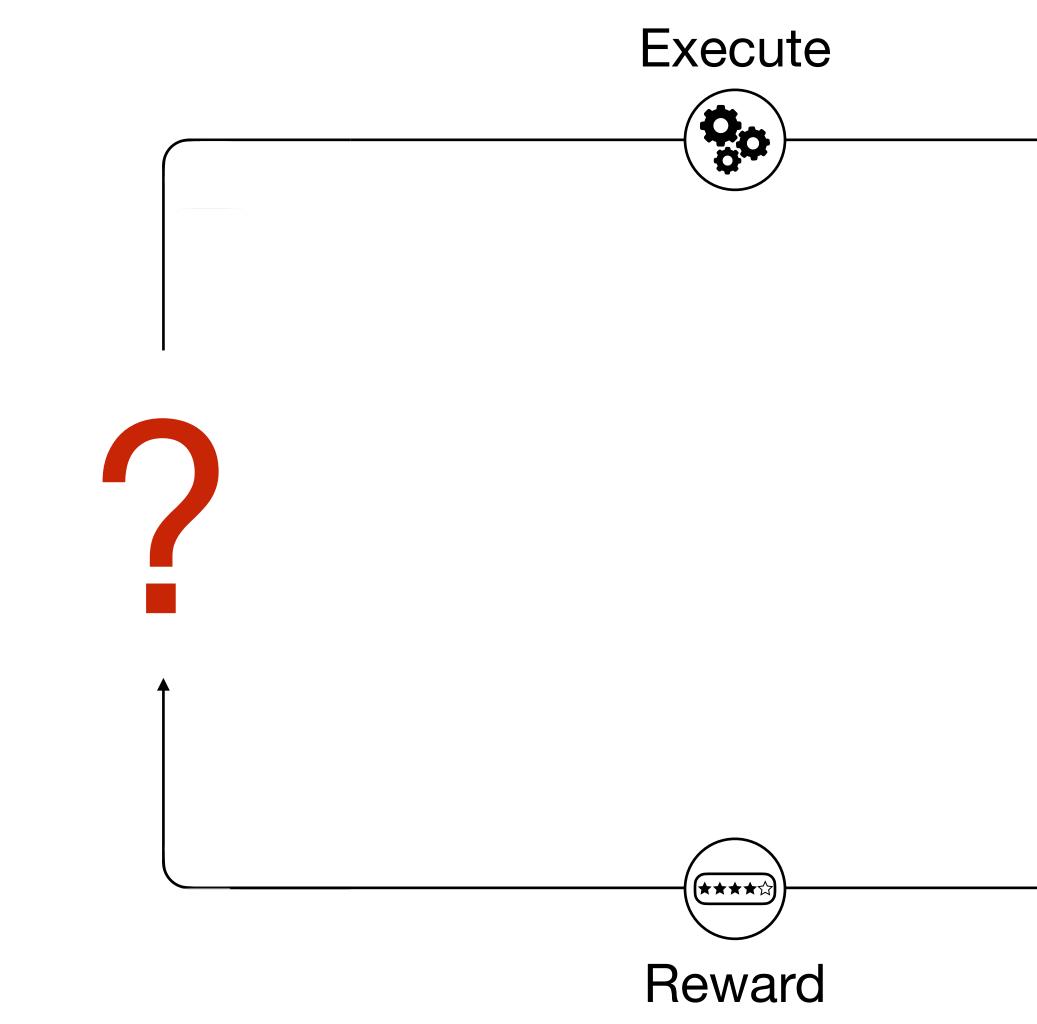
Complex task

Interpretability

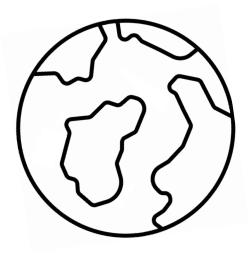
Trust

Safety

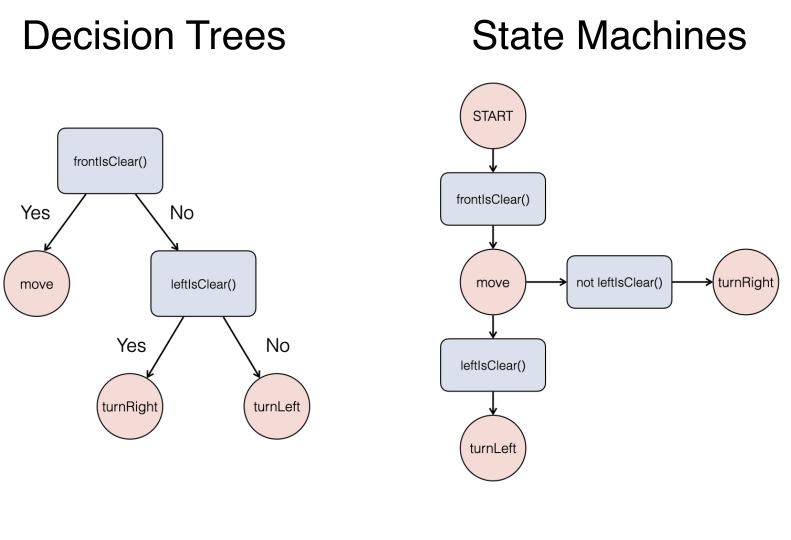
Contestability



Environment



Programmatic Reinforcement Learning



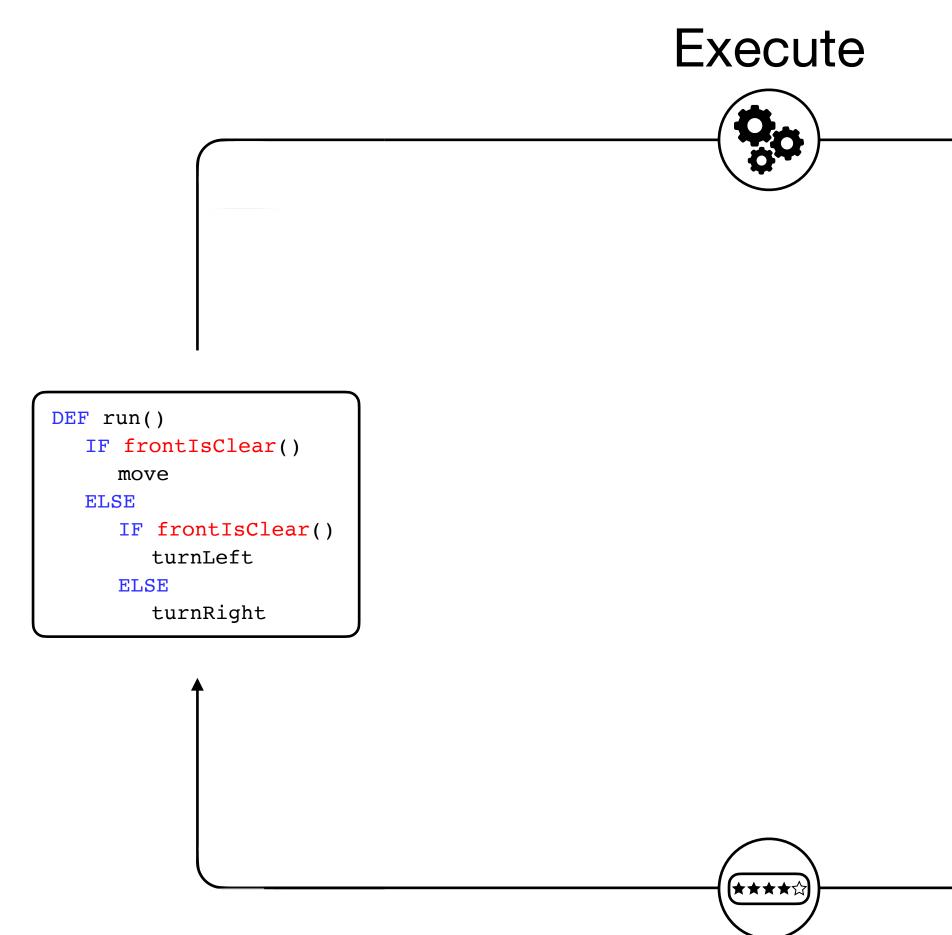
Hard to represent repetitive behaviors

• Difficult to scale

Programs

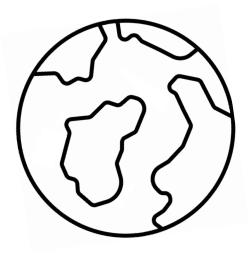
DEF run()
IF frontIsClear()
 move
ELSE
 IF frontIsClear()
 turnLeft
ELSE
 turnRight

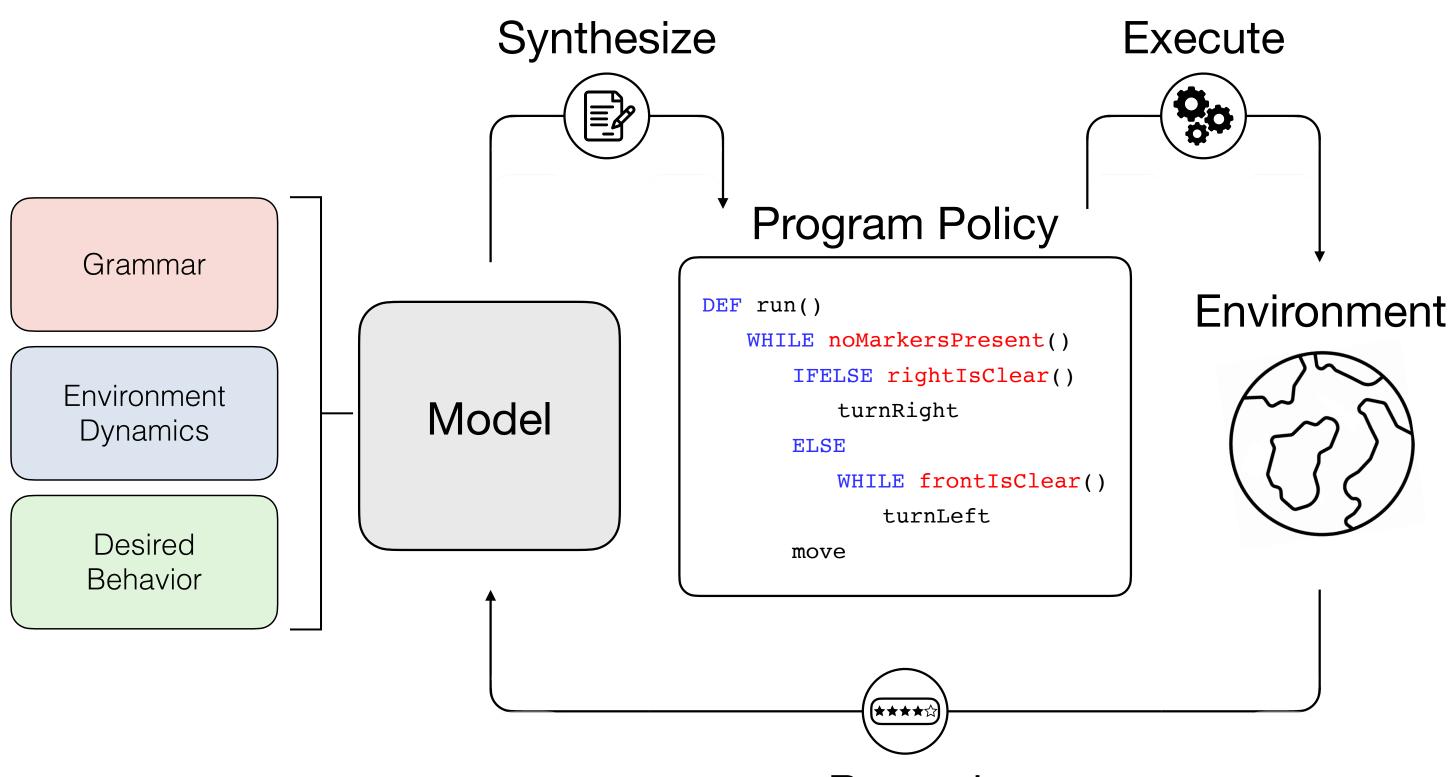
- Flexible
- Human readable
- Hard to synthesize



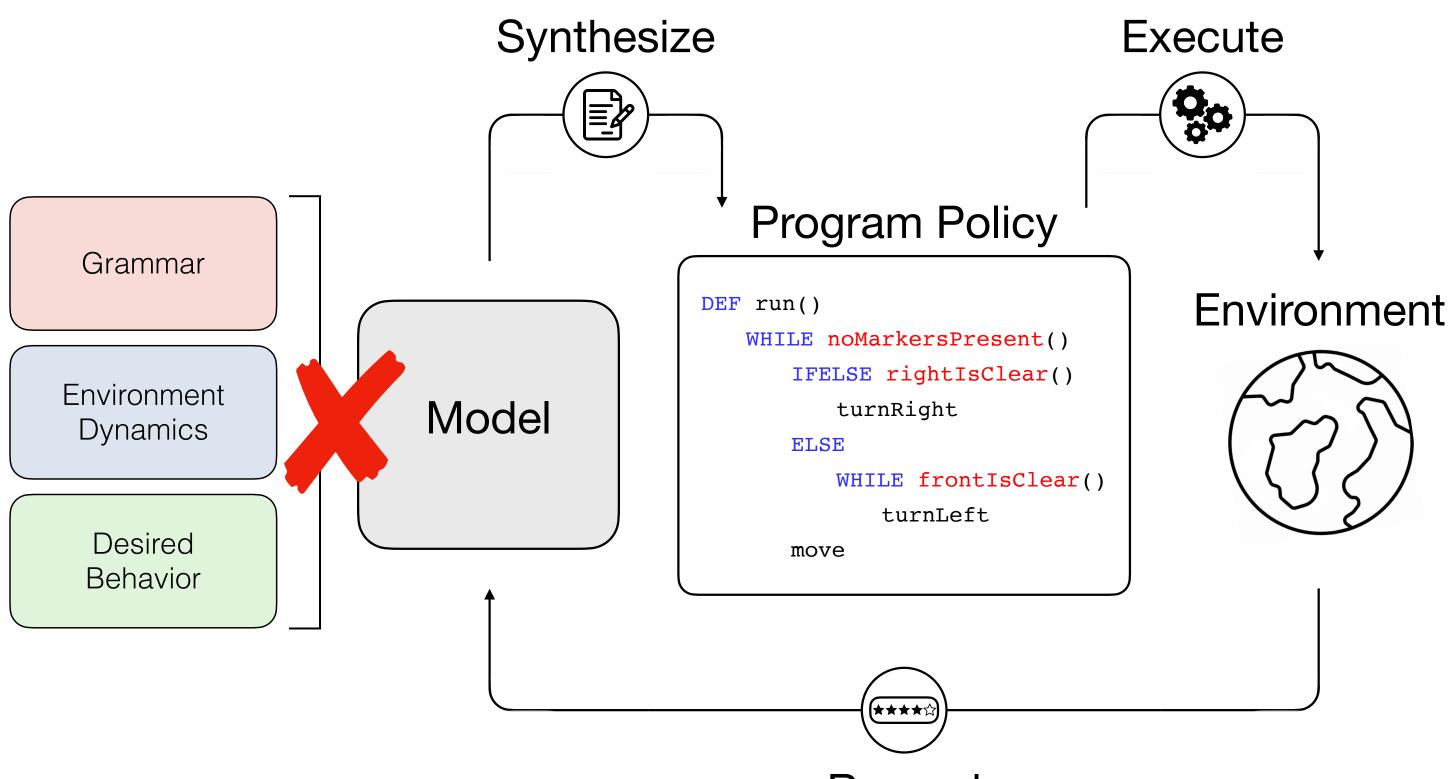
Reward

Environment



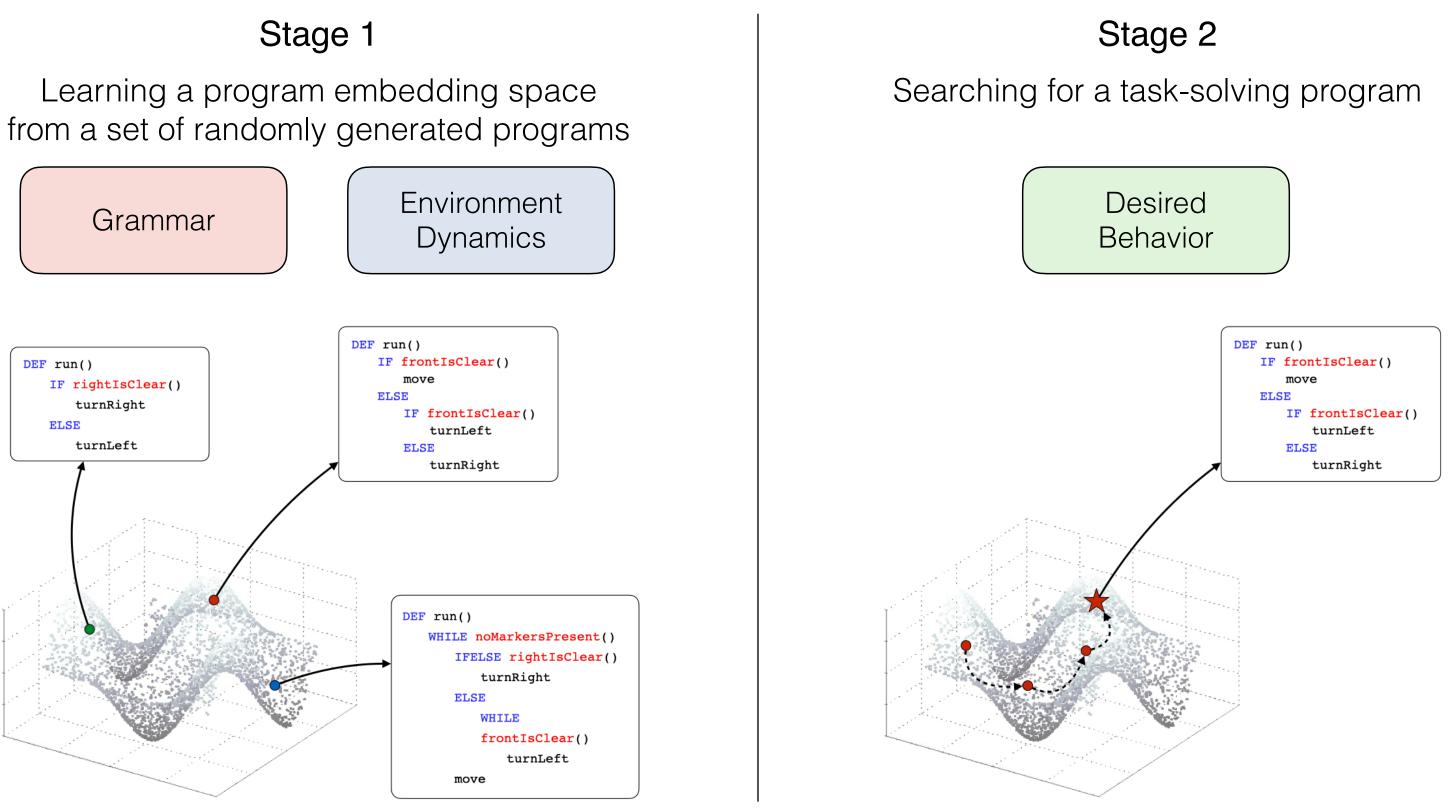


Reward



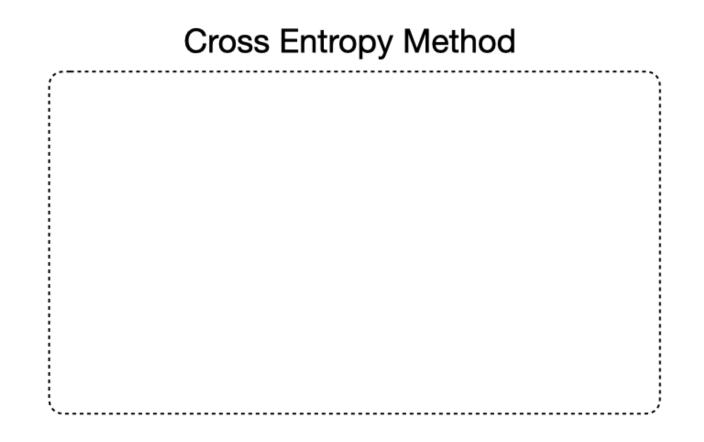
Reward

LEAPS: Learning Embeddings for IAtent Program Synthesis

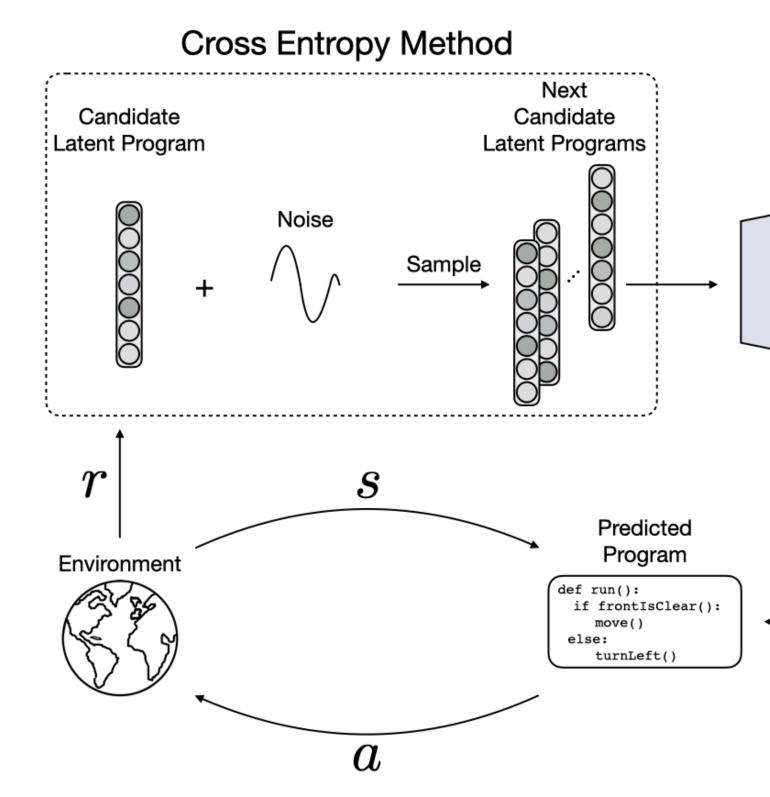


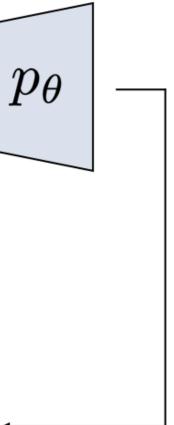
Learning a Program Embedding Space

Latent Program Search with Cross-Entropy Method



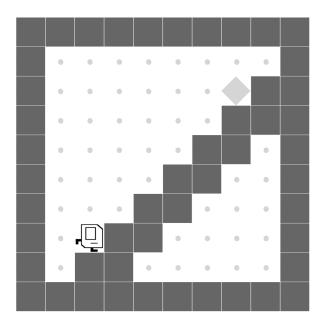
Latent Program Search with Cross-Entropy Method



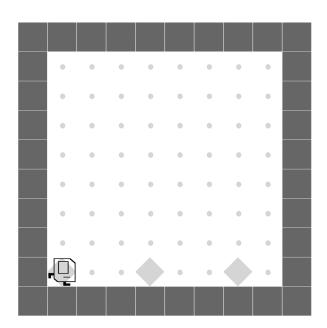


Karel Tasks

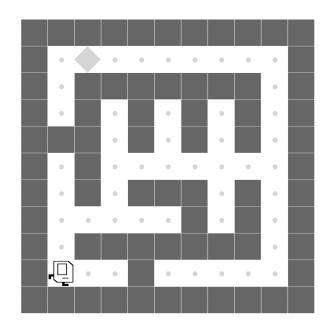
StairClimber



TopOff



Maze

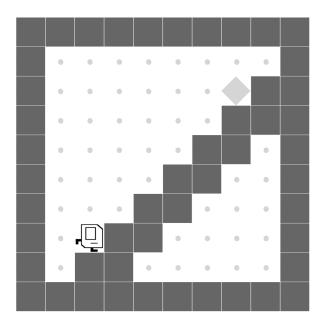


FourCorners

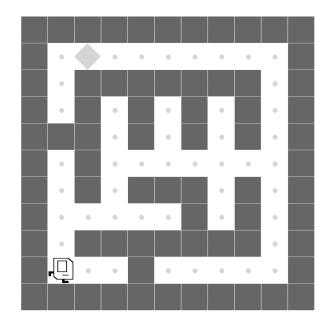
•	٠	•	•	•	•	•	•	
٠	٠	٠	•	•	•	•	•	
•	٠	٠	•	•	•	٠	•	
•	٠	٠	•	•	•	٠	•	
•	٠	٠	•	•	•	•	•	
•	٠	٠	•	•	•	•	•	
•	٠	٠	•	•	٠	٠	٠	
•	P	•	•	•	•	•	•	

Karel Tasks

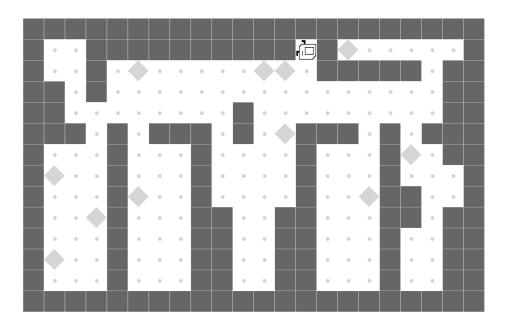
StairClimber



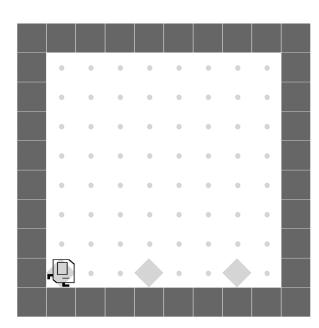
Maze



CleanHouse



TopOff

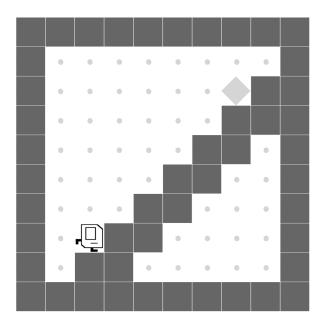


FourCorners

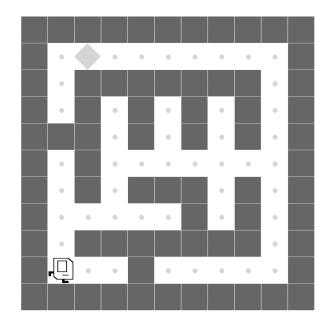
•	٠	•	•	•	•	•	•	
٠	٠	٠	•	•	•	•	•	
•	٠	٠	•	•	•	٠	•	
•	٠	٠	•	•	•	٠	•	
•	٠	٠	•	•	•	•	•	
•	٠	٠	•	•	•	•	•	
•	٠	٠	•	•	٠	٠	٠	
•	P	•	•	•	•	•	•	

Karel Tasks

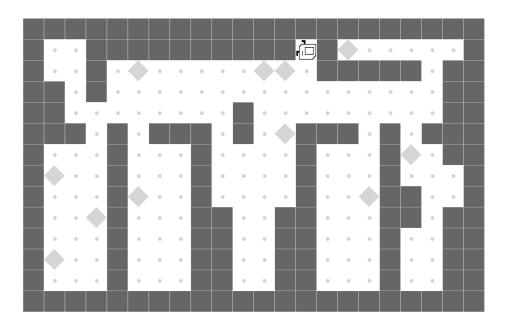
StairClimber



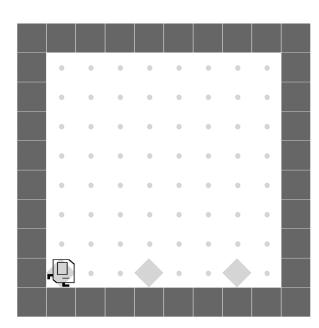
Maze



CleanHouse



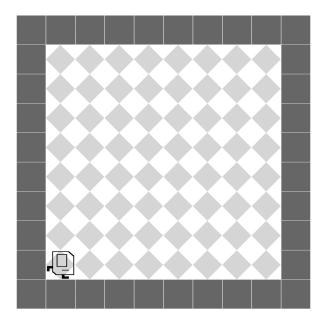
TopOff



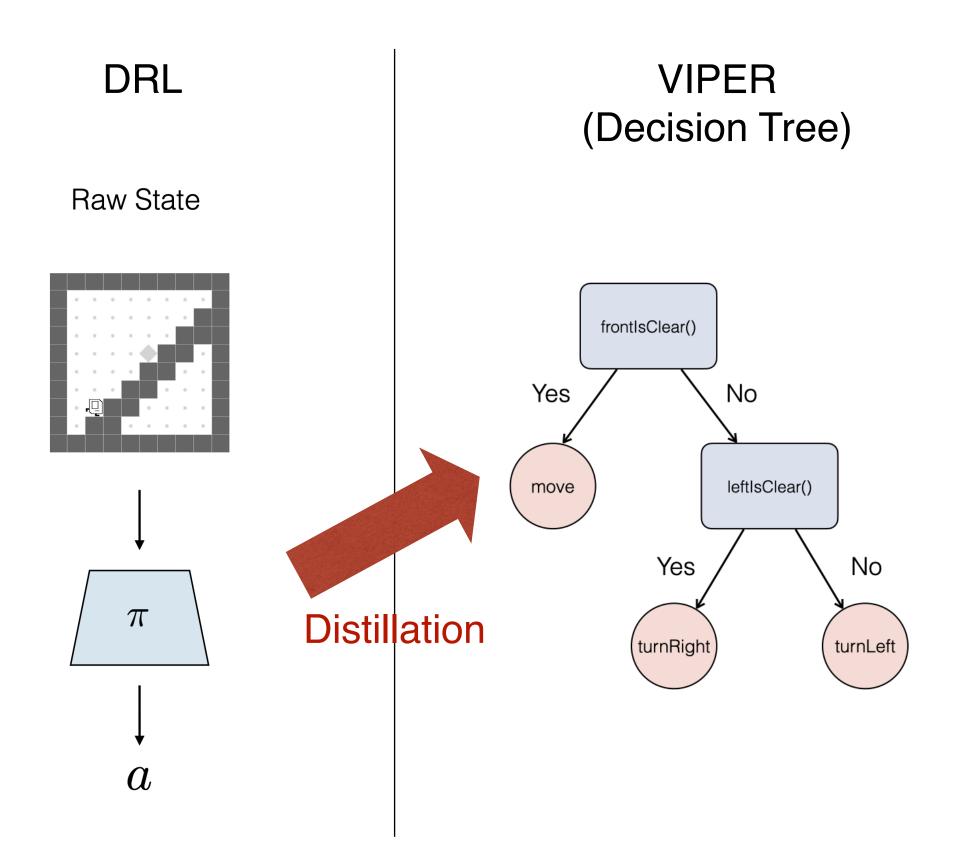
FourCorners

•	٠	•	•	•	•	•	•	
•	٠	٠	٠	•	•	٠	٠	
•	٠	•	•	•	•	٠	•	
•	•	•	•	•	•	•	٠	
•	٠	•	•	•	•	•	•	
•	٠	•	•	•	٠	•	•	
•	٠	•	•	•	•	•	•	
•		•	•	•	•	٠	•	

Harvester

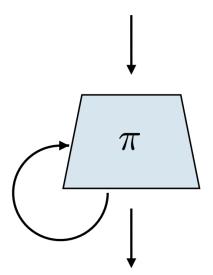


Baselines



Naive Program Synthesis

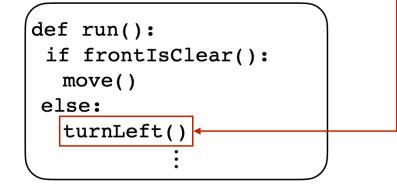
startToken

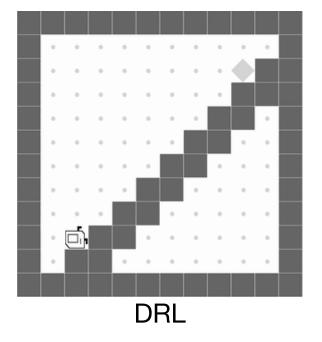


Program Token Generated at t

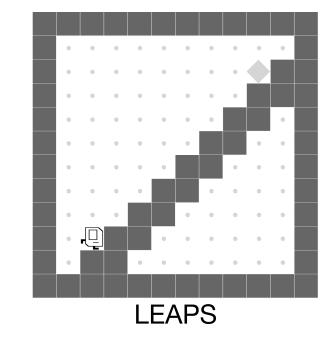
turnLeft()

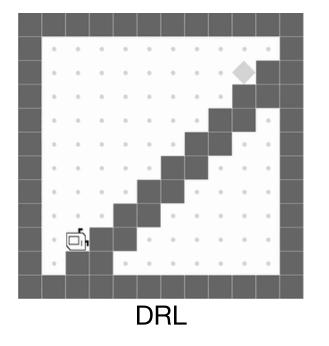
Program Synthesized So Far



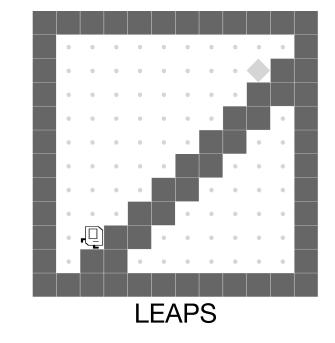


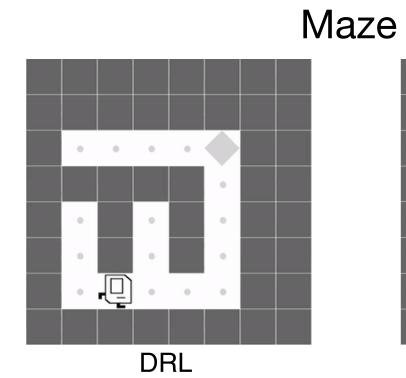
StairClimber

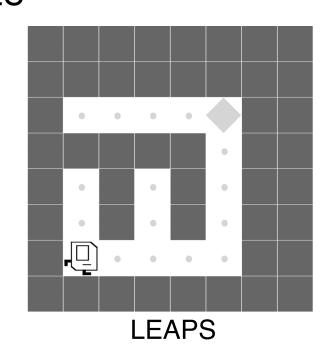


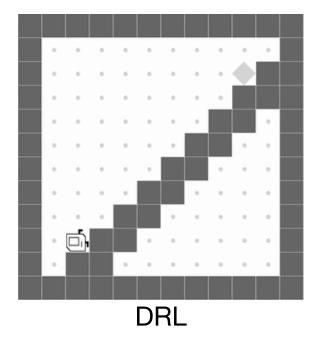


StairClimber

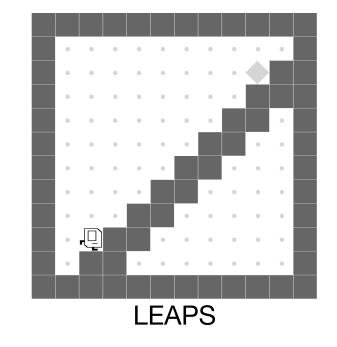


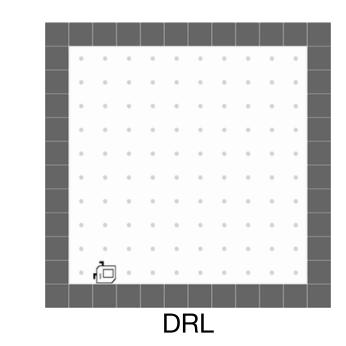


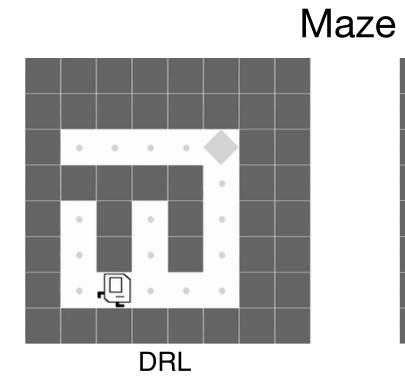


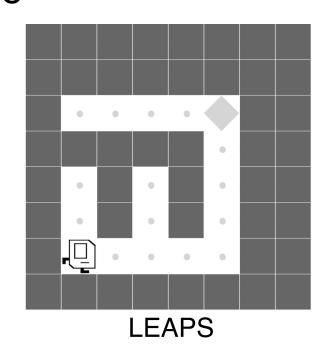


StairClimber

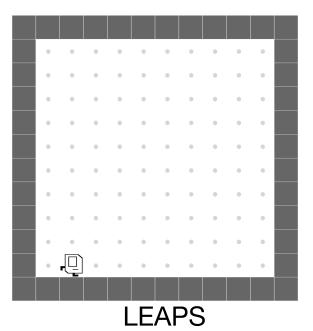


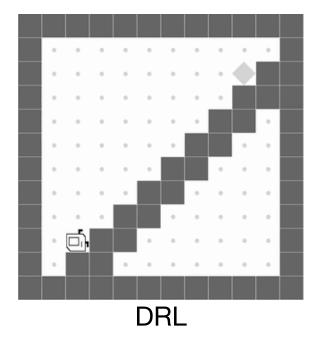




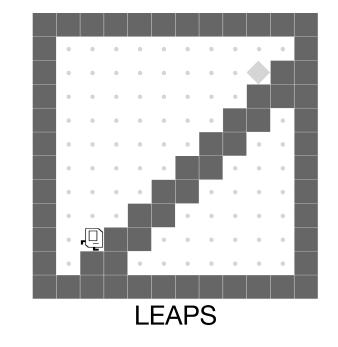


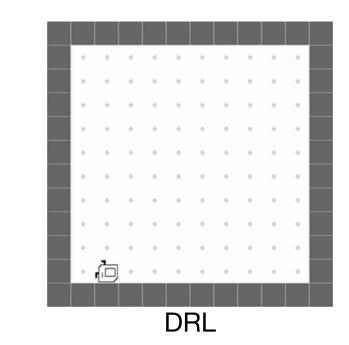
FourCorners



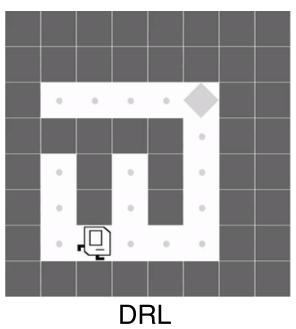


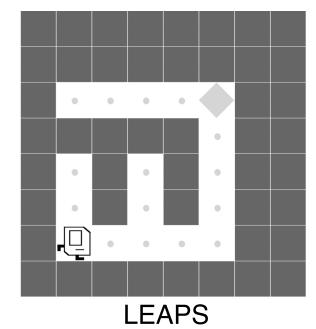
StairClimber

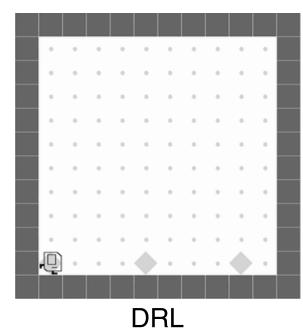




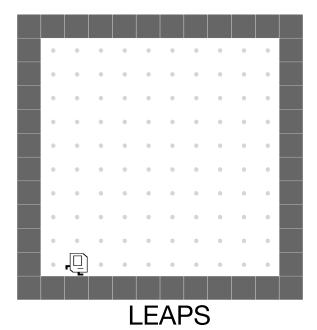
Maze



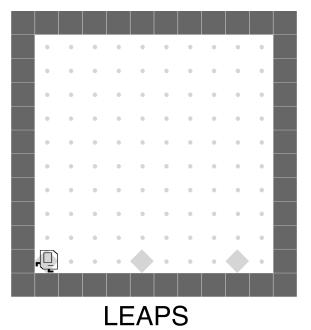


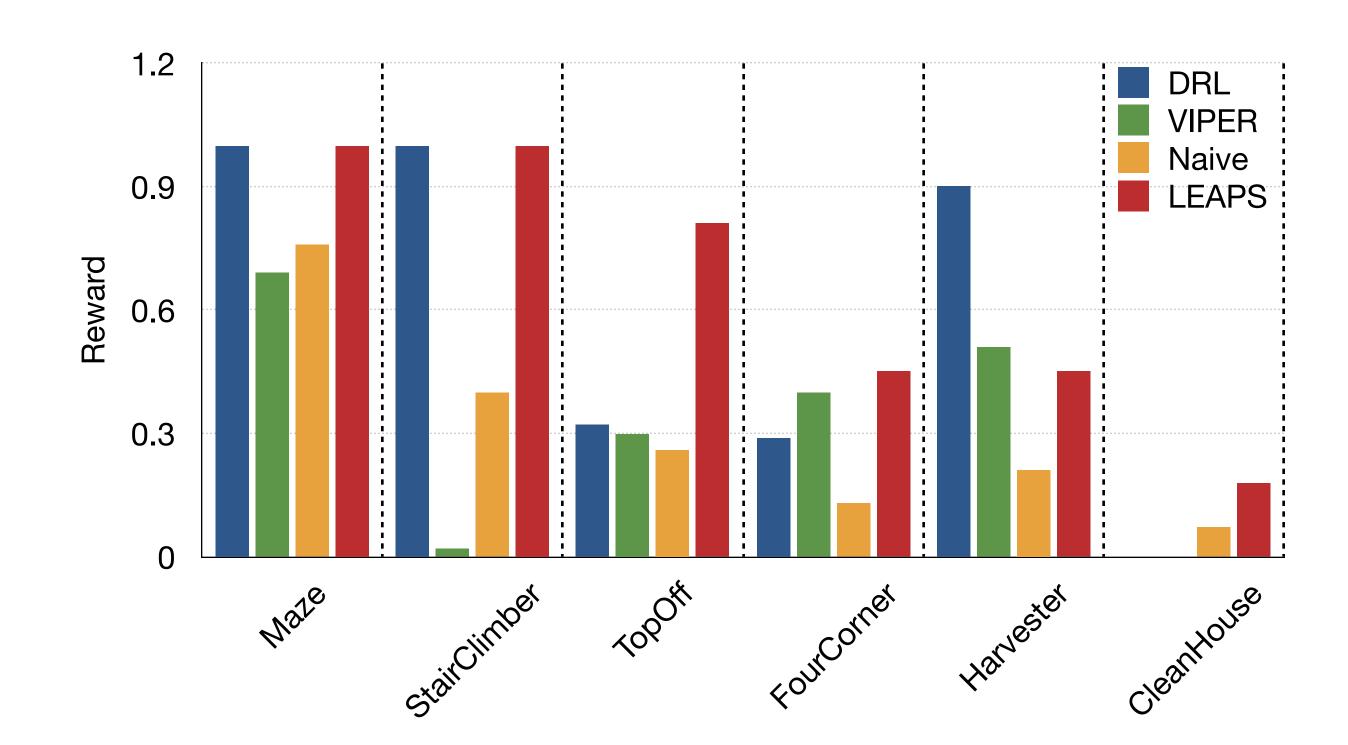


FourCorners

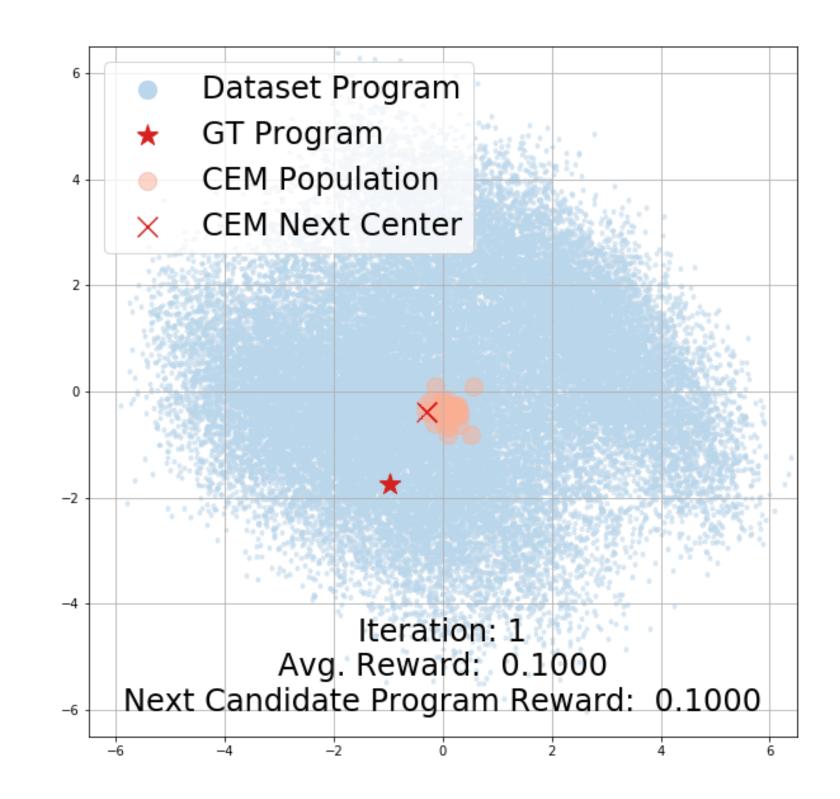


TopOff





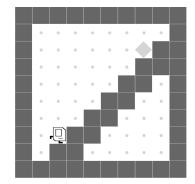
Results - CEM trajectory Visualization



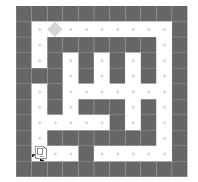
Zero-shot Generalization

Learning

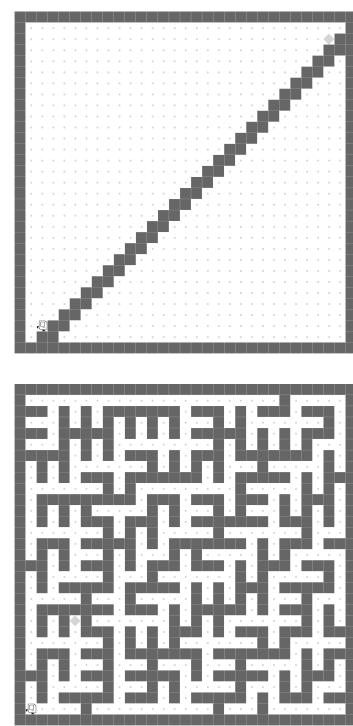
StairClimber

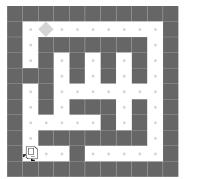


Maze



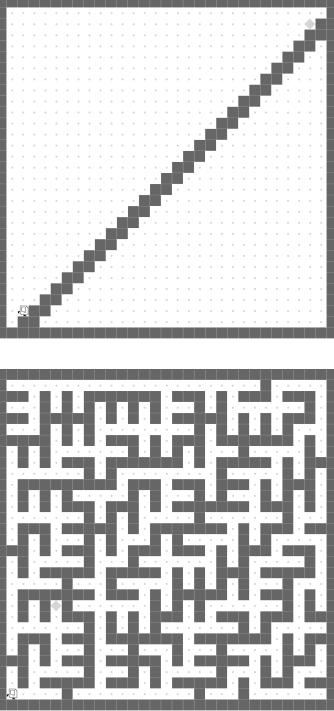
Zero-shot Generalization





Learning

Maze



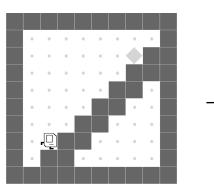


Evaluation on 100 x 100

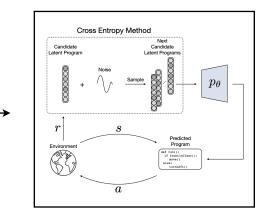
LEAPS Zero-shot Generalization

Learning

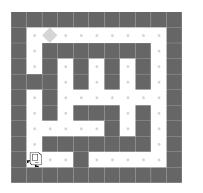
StairClimber



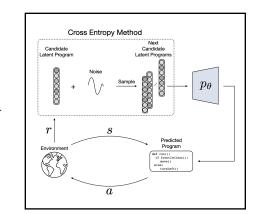
CEM search



Maze



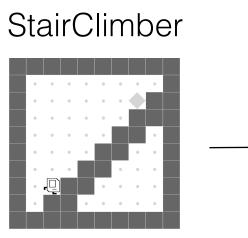
CEM search



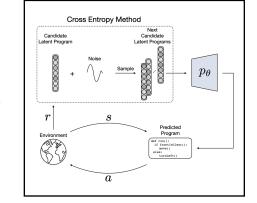
LEAPS Zero-shot Generalization

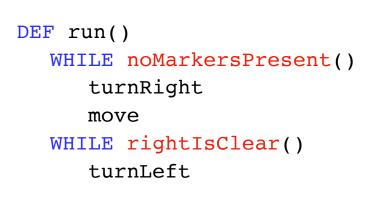
Learning

LEAPS policy

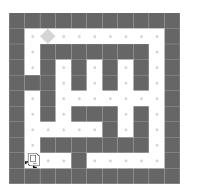


CEM search

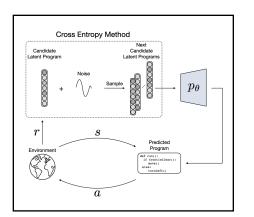




Maze



CEM search



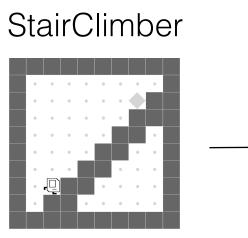


DEF run() IF frontIsClear() turnLeft WHILE noMarkersPresent() turnRight move

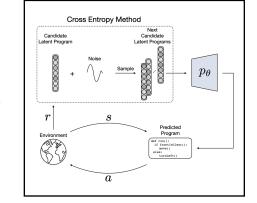
LEAPS Zero-shot Generalization

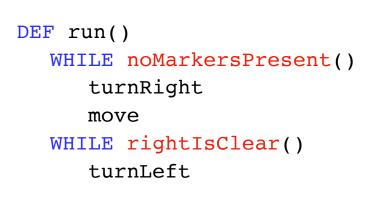
Learning

LEAPS policy

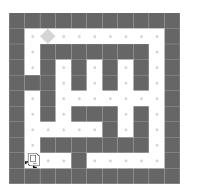


CEM search

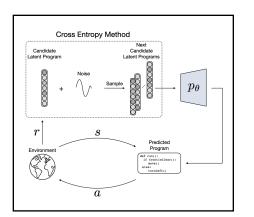




Maze



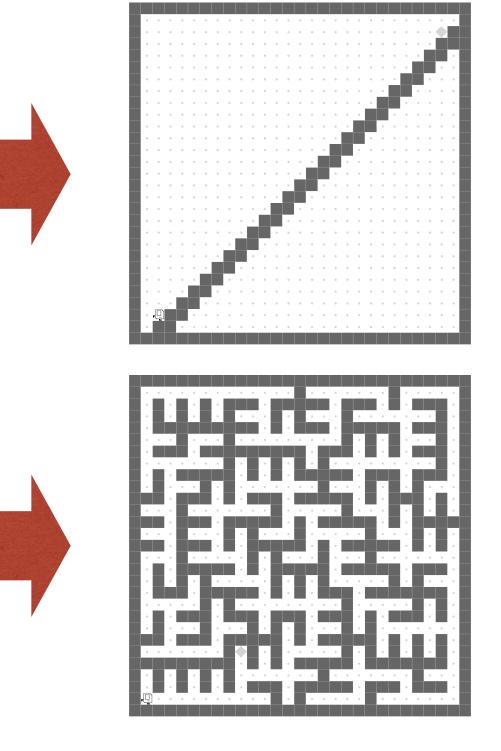
CEM search



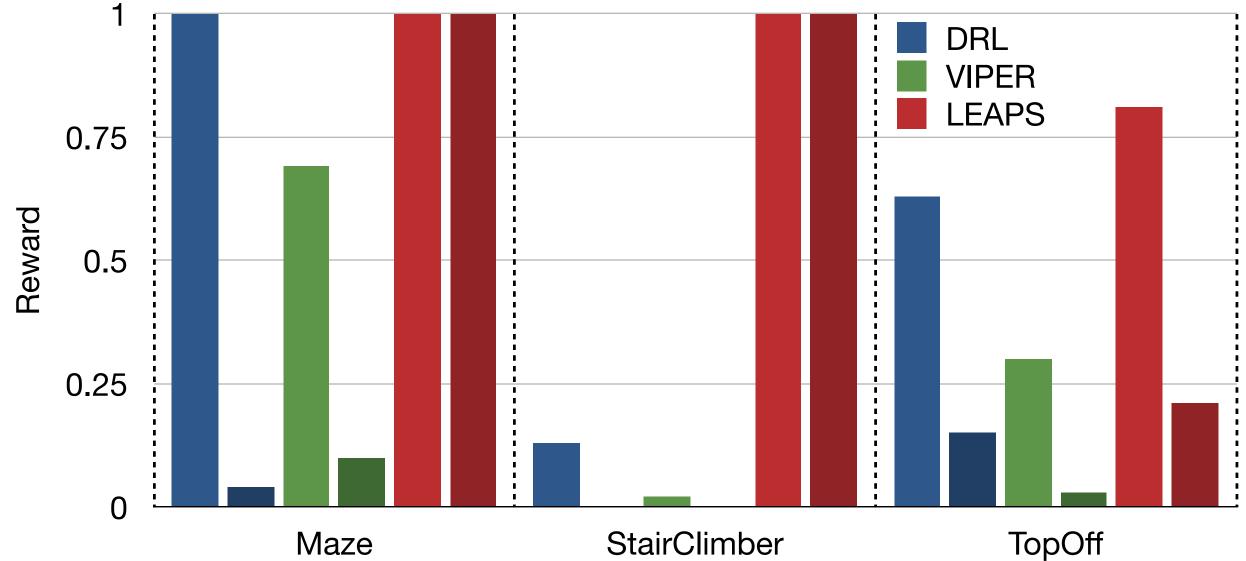


DEF run() IF frontIsClear() turnLeft WHILE noMarkersPresent() turnRight move

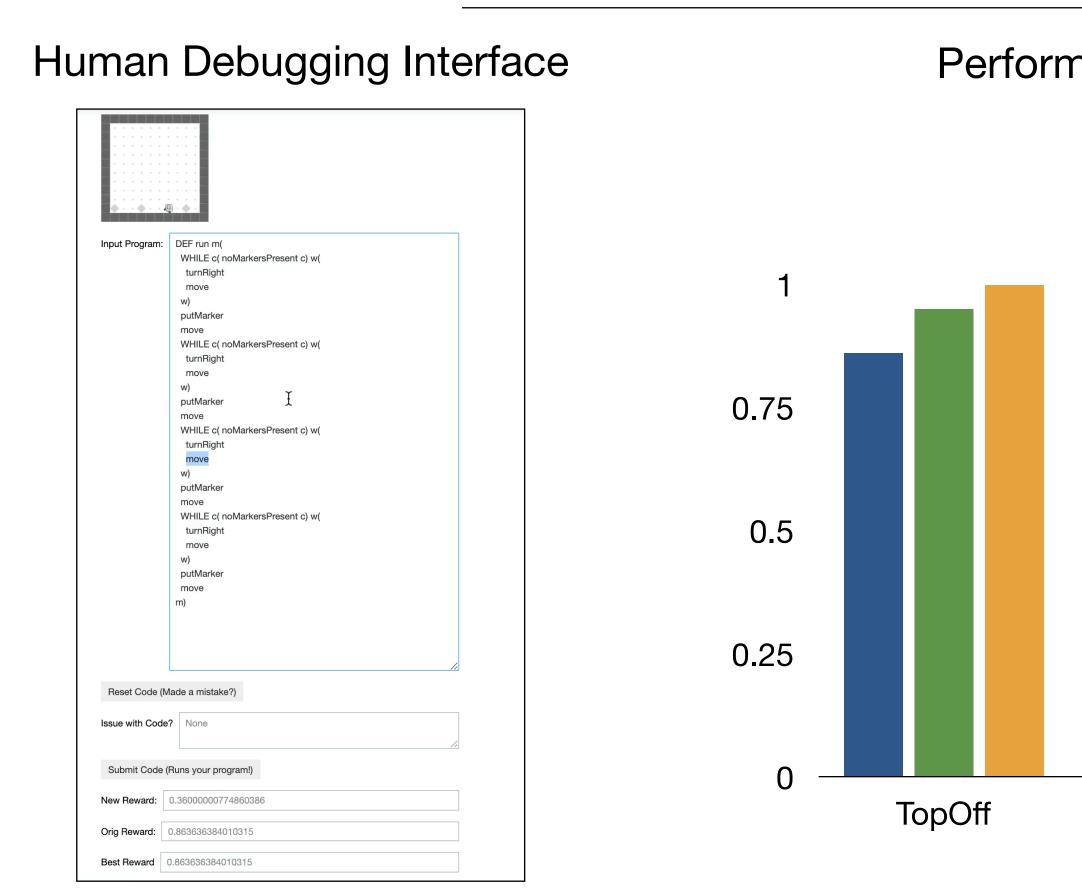
Evaluation on 100 x 100



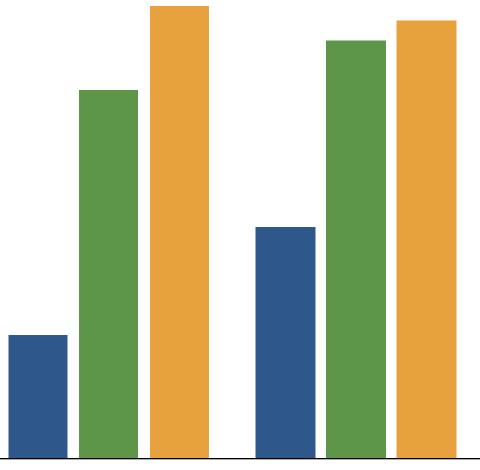
Results - Zero-shot Generalization



Interpretability



Performance Improvement

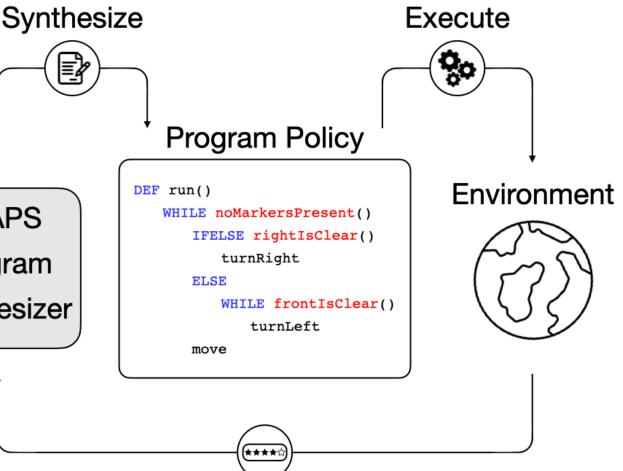


FourCorner

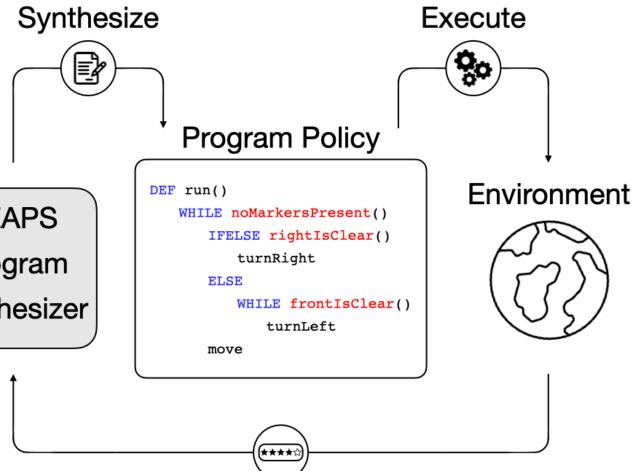
Harvester

Takeaways

- We learn to synthesize a program as a policy purely from reward
- We first learn a program embedding space and then search for a task-solving program
- Our synthesized programs achieve good performance, and are more generalizable and interpretable



LEAPS Program Synthesizer



Reward

Learning to Synthesize Programs as Interpretable and Generalizable Policies

Dweep Trivedi*, Jesse Zhang*, Shao-Hua Sun*, Joseph J Lim

For more details... Paper and code: <u>clvrai.com/leaps</u>

