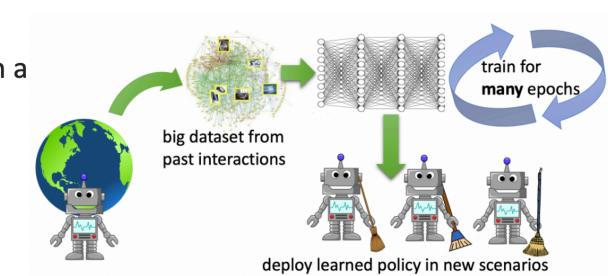
Conservative Data Sharing for Multi-Task Offline RL

Tianhe Yu*, Aviral Kumar*, Yevgen Chebotar, Karol Hausman, Sergey Levine, Chelsea Finn

Using all data for all tasks doesn't always work in multi-task offline RL. We devise a scheme, CDS, to enable intelligent data sharing.

Offline Reinforcement Learning

- Goal: Learn a (good) policy directly from a fixed dataset of interactions
- Several advances in handling problems: distributional shift, overestimation, etc.



However, current algorithms cannot leverage heterogenous "general" datasets, to solve multiple problems

Can we devise techniques to leverage diverse, heterogenous data?

Multi-Task Learning to the Rescue

Specialist in one task Generalist in various tasks

solving one task using an offline dataset

solving multiple tasks using given data

Goal of multi-task RL: learn a single policy that solves multiple tasks more efficiently than learning each task independently.

Multi-Task Offline RL: Key Ingredients

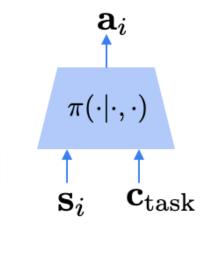
Parameter Sharing:

Data Sharing:

 Train a context-conditioned policy, context identifies the task

Optimization issues, right way to condition, etc.

temporal stitching



multi-task offline RL?

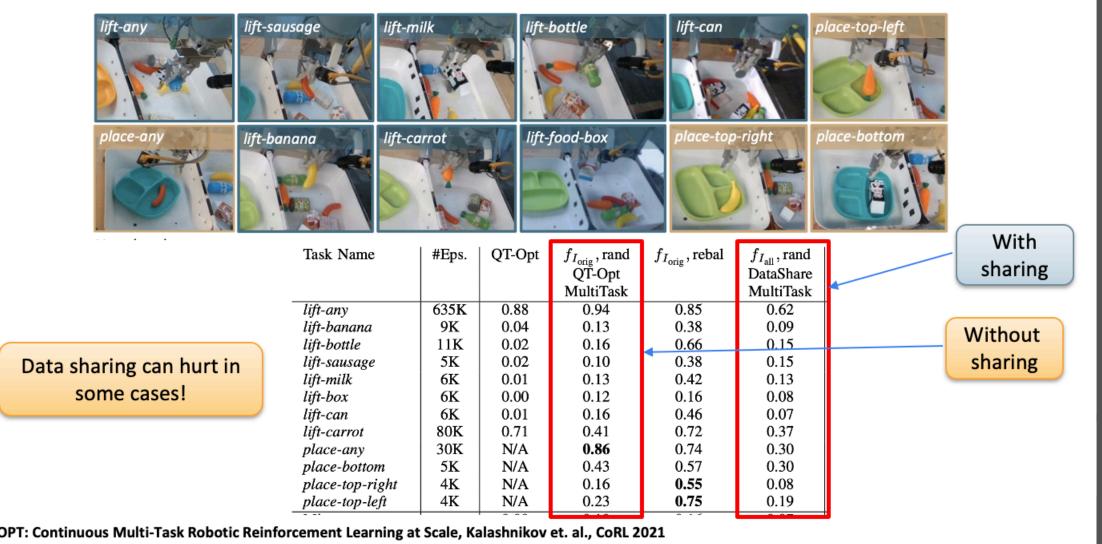
What is the right way to

Could data sharing help in

Could it hurt?

share data?

Does Data Sharing Always Help?



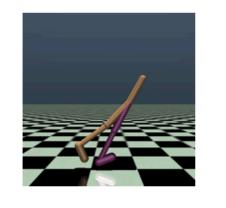
When does naively sharing data hurt?

N/A

N/A

Reduced

performance



Dataset types / Tasks

medium/run forward medium/run backward

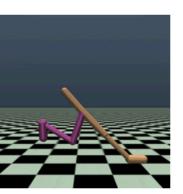
average task performance

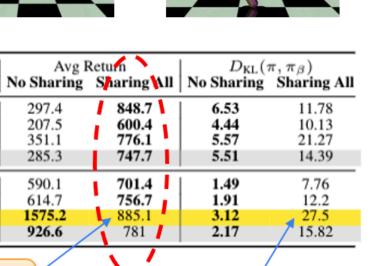
medium-replay/run forward

medium/run backward

average task performance

(b) distributional shift

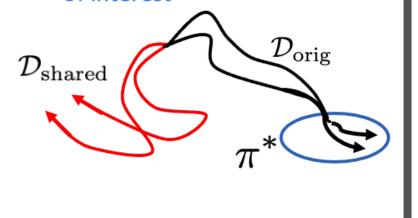




Increased

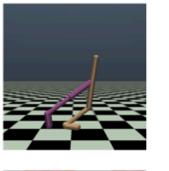
divergence

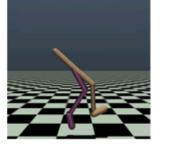
- Sharing data across tasks generally helps
- It hurts performance when sharing data increases deviation (divergence) from the optimal policy of the task of interest

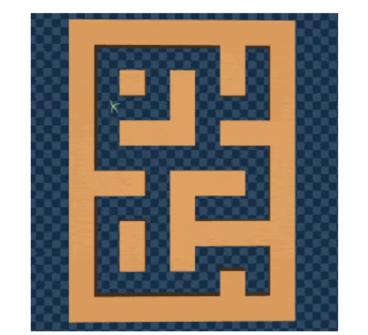


Experimental Evaluation

Wide range of tasks: locomotion, navigation and manipulation tasks







Experiment results (low-dimensional inputs)

Environment	Tasks / Dataset type	CDS (ours)	CDS (basic)	HIPI [16]	Sharing All	No Sharing
	run forward / medium-replay	1057.9±121.6	968.6±188.6	695.5±61.9	701.4±47.0	590.1±48.6
walker2d	run backward / medium	564.8±47.7	594.5±22.7	626.0 ± 48.0	756.7 ±76.7	614.7±87.3
	jump / expert	1418.2 ± 138.4	1501.8±115.1	1603.7±146.8	885.1±152.9	1575.2±70.9
	average	1013.6±71.5	1021.6±76.9	975.1±45.1	781.0 ± 100.8	926.6±37.7
	door open / medium-replay	58.4%±9.3%	30.1%±16.6%	26.5%±20.5%	34.3%±17.9%	14.5%±12.7
	door close / expert	65.3% ±27.7%	41.5%±28.2%	1.3%±5.3%	48.3%±27.3%	4.0%±6.1%
Meta-World [90]	drawer open / expert	57.9% ±16.2%	39.4%±16.9%	41.2%±24.9%	55.1%±9.4%	16.0%±17.5%
	drawer close / medium-replay	98.8%±0.7%	86.3%±0.9%	62.2%±33.4%	100.0%±0%	99.0%±0.7%
	average	70.1% ±8.1%	49.3%±16.0%	32.8%±18.7%	59.4%±5.7%	33.4%±8.3%
	large maze (7 tasks) / undirected	22.8% ± 4.5%	10.0% ± 5.9%	$1.3\% \pm 2.3\%$	16.7% ± 7.0%	13.3% ± 8.6%
AntMaze [19]	large maze (7 tasks) / directed	$24.6\% \pm 4.7\%$	$0.0\% \pm 0.0\%$	$11.8\% \pm 5.4\%$	$20.6\% \pm 4.4\%$	$19.2\% \pm 8.0\%$
	medium maze (3 tasks) / undirected	$36.7\% \pm 6.2\%$	$0.0\% \pm 0.0\%$	$8.6\% \pm 3.2\%$	$22.9\% \pm 3.6\%$	$21.6\% \pm 7.1\%$
	medium maze (3 tasks) / directed	18.5% \pm 6.0%	$0.0\% \pm 0.0\%$	$8.3\% \pm 9.1\%$	$12.4\% \pm 5.4\%$	17.0% \pm 3.2%
				,		_

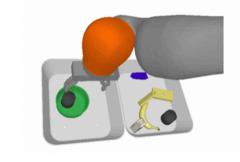
Relabeling Direction	CDS weight	
$door\ close o door\ open$	0.46	
drawer open \rightarrow door open	0.10	
drawer close \rightarrow door open	0.02	
drawer open \rightarrow drawer close	0.35	
door open \rightarrow drawer close	0.26	
door close \rightarrow drawer close	0.22	

Does CDS prevent excessive distributional shift?

Environment	Dataset types / Tasks	No Sharing	$\begin{array}{c} D_{\mathrm{KL}}(\pi,\pi_{\beta}) \\ \mathbf{Sharing \ All} \end{array}$	CDS (ours)
walker2d	medium-replay / run forward medium / run backward	1.49 1.91	7.76 12.2	1.49 6.09
	expert / jump	3.12	27.5	2.91

CDS assigns high weights to more relevant tasks.

CDS reduces the KL divergence between the single-task optimal policy and the behavior policy after relabeling.



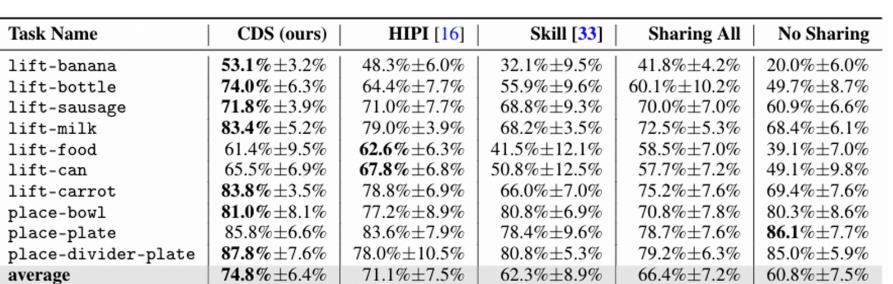
CDS: Conservative Data Sharing

How can we balance the various factors that affect the performance of data sharing?

A simple approach works: Q-values \hat{Q}^{π} obtained via Share transitions with high conservative Q-values. < $\widehat{r}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) - D(\pi, \pi_{\beta})(\mathbf{s}, \mathbf{a})$ [BRAC] **Intuition:** Conservative Q-values adequately balance: $\min \ \alpha E_{\pi}[Q(\mathbf{s}, \mathbf{a})] + \mathrm{TD}(\mathbf{s}, \mathbf{a}, Q)$ [CQL] (a) "goodness" of data (i.e., rewards in the data),

All we need to do now is to relabel many datapoints to increase sample size

CDS: relabels transitions if the Q-value of a transition shared from task j to task i exceeds the top-k percentile of the Q-values of all datapoints for task i.



Paper Link:

Relabel data from one task to the other

Can be effective in sequential problems due to