TNASP: A Transformer-based NAS Predictor with a Self-evolution Framework

Shun Lu^{1,2}, Jixiang Li³, Jianchao Tan³, Sen Yang³, Ji Liu³

¹ Research Center for Intelligent Computing Systems, State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences

² University of Chinese Academy of Sciences

³ Kuaishou Technology

lushun19s@ict.ac.cn, {lijixiang, jianchaotan, senyang, jiliu}@kuaishou.com

Speaker: Shun Lu

1. Background & Motivation

1.1 Neural Architecture Search (NAS)

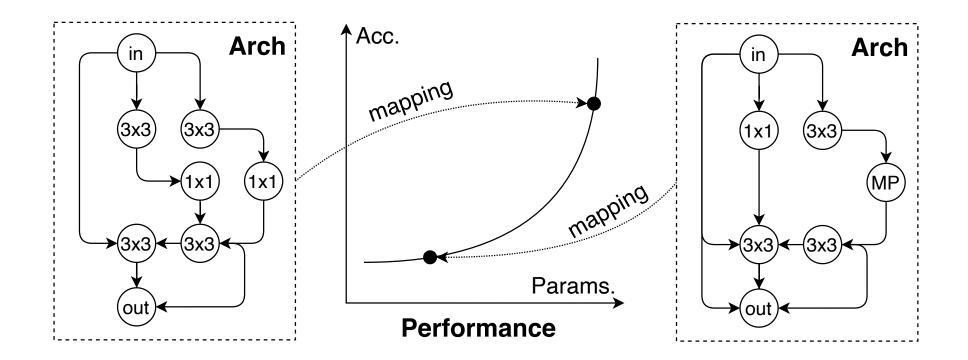
- Three major elements of NAS:
 - Search Space, Search Strategy, and Performance Estimation Strategy^[1]
- One major problem :
 - Performance estimation stage of each sub-architecture takes too much time!

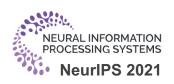


1. Background & Motivation

1.2 Predictor-based NAS methods:

- Objective: <u>Learn a mapping relationship</u> between architectures and their real performance
- Advantage: <u>Largely reduce</u> the search cost.

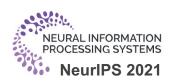




1. Background & Motivation

1.3 Previous works of predictor-based NAS methods:

- Training-free: Compute different metrics over graph topology information as feature encodings.
- <u>Training-based</u> (focus): Different DNN backbones for feature encodings → regression.
 - Sequence-based schemes:
 - NAO^[2], D-VAE^[3], BANANAS^[4] and so on.
 - Graph-based methods:
 - BONAS^[5], InterpretableNAS^[6], CTNAS^[7] and so on.
 - Drawbacks:
 - Feature Encodings over graph-structure data are not good enough.
 - Temporal evaluation information is ignored, which however, is useful.

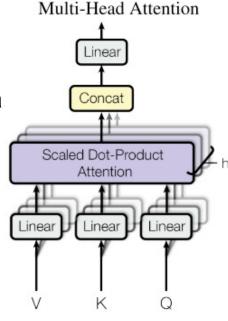


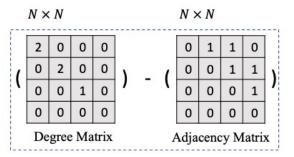
2. Contributions

- A Transformer-based NAS performance Predictor (TNASP):
 - Use graph Laplacian matrix as the positional encoding.
 - Use multi-head self-attention mechanism to better encode features on graph data

- A generic Self-Evolution (SE) framework :
 - Leverage evaluation score as constraints to optimize.
 - Make full use of temporal evaluation information.

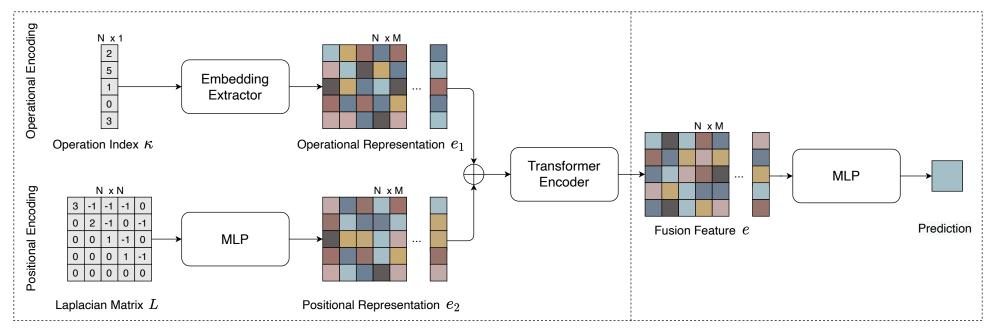
Achieve state-of-the-art results on 4 benchmark search spaces.





Laplacian Matrix

3.1 A Transformer-based NAS Performance Predictor (TNASP):



Encoder Regressor

• Components: an encoder and a regressor

➤ Encoder: 3-layer Transformer Encoder

> Regressor: 2-layer MLP

3.2 Self-evolution framework:

Our formulation:

Training Loss Evaluation Loss
$$\min_{\theta,\bar{y}} \sum_{i=1}^n \|f_\theta(x_i) - y_i\|^2 + \alpha \sum_{j=1}^V \|f_\theta(v_j) - \bar{y}_j\|^2 \qquad \text{Auxiliary variables as the proxy of ground truth labels.}$$

$$\text{s.t.} \quad \frac{1}{V} \sum_{i=1}^V \|\hat{y}_j^{(t)} - \bar{y}_j\|^2 = e^{(t)}, t = 1, 2, 3, ..., T \qquad \text{Each previous evaluation as each constraint.}$$

Use Lagrange Multiplier to convert as a minimax optimization problem:

$$L(\theta, \bar{y}, \lambda) = \min_{\theta, \bar{y}} \max_{\lambda} \sum_{i=1}^{n} ||f_{\theta}(x_i) - y_i||^2 + \alpha \sum_{j=1}^{V} ||f_{\theta}(v_j) - \bar{y}_j||^2 + \frac{1}{T} \sum_{t=1}^{T} \lambda^{(t)} (\frac{1}{V} \sum_{j=1}^{V} ||\hat{y}_j^{(t)} - \bar{y}_j||^2 - e^{(t)})$$

3.2 Self-evolution framework:

Gradient-based iteratively updates:

$$\theta^{k+1} = \theta^k - \eta_\theta \frac{\partial L(\theta, \bar{y}^k, \lambda^k)}{\partial \theta}$$
(11)

$$\bar{y}^{k+1} = \bar{y}^k - \eta_{\bar{y}} \frac{\partial L(\theta^k, \bar{y}, \lambda^k)}{\partial \bar{y}}$$
 (12)

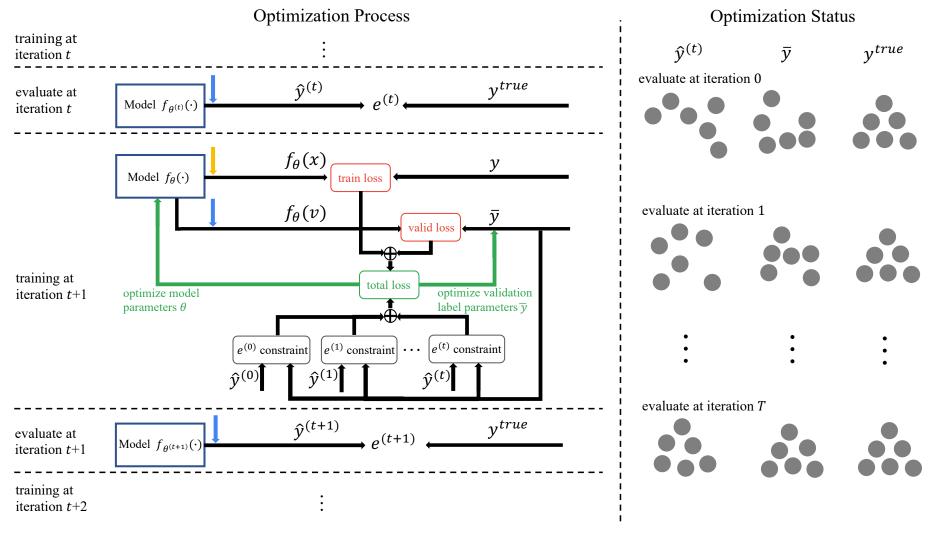
$$\lambda^{k+1} = \lambda^k + \eta_\lambda \frac{\partial L(\theta^k, \bar{y}^k, \lambda)}{\partial \lambda}$$
 (13)

Algorithm 1 Self-evolution Optimization Algorithm

Input: Input training data x, input validation data v, input training target y, neural network f. **Output:** Network parameters θ , estimated target \bar{y} .

- 1: Optimize the network parameters θ until convergence using normal training performed on the training dataset only.
- 2: for t = 1 to T do
- 3: Compute $e^{(t)}$ according to Eq. (9) using predictor's prediction results on validation dataset.
- 4: Add a new constraint: $\frac{1}{V} \sum_{i=1}^{V} ||\hat{y}_{i}^{(t)} \bar{y}_{j}||^{2} = e^{(t)}$ into Eq. (8)
- 5: **while** not converged **do**
- 6: Update θ according to the Eq. (11)
- 7: Update \bar{y} according to the Eq. (12)
- 8: Update λ according to the Eq. (13)
- 9: **end while**
- 10: **end for**
- 11: **return** Network parameters θ and estimated targets \bar{y}

3.2 Self-evolution framework:



4.1 Ranking results on NAS-Bench-101

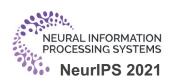
Training Samples Validation Samples Test Samples	100 (0.02%) 200 all	172 (0.04%) 200 all	424 (0.1%) 200 100	424 (0.1%) 200 all	4236 (1%) 200 all
Neural Predictor [†] [44]	0.391	0.545	0.710	0.679	0.769
SPOS [17]	-	-	0.196*	_	-
FairNAS [9]	-	-	-0.232*	-	-
NAO [‡] [31]	0.501	0.566	0.704	0.666	0.775
ReNAS [47]	-	-	0.634*	0.657	0.816
RegressionNAS	-	-	0.430^{\star}	-	-
CTNAS [8]	-	-	0.751*	-	-
TNASP	0.600	0.669	0.752	0.705	0.820
Neural Predictor [†] + SE	0.458	0.577	0.713	0.684	0.773
$NAO^{\ddagger} + SE$	0.564	0.624	0.732	0.680	0.787
TNASP + SE	0.613	0.671	0.754	0.722	0.820

Table 1: Comparison with other methods on NAS-Bench-101. We calculate the Kendall's Tau by predicting accuracy of all architectures in NAS-Bench-101. †: re-implemented by ourselves. ‡: implemented based on their released model. *: reported by CTNAS[8].

4.2 Ranking results on NAS-Bench-201

Training Samples Validation Samples Test Samples	78(0.05%)	156(1%)	469(3%)	781(5%)	1563(10%)
	200	200	200	200	200
	all	all	all	all	all
Neural Predictor [†] [44]	0.343	0.413	0.584	0.634	0.646
NAO [‡] [17]	0.467	0.493	0.470	0.522	0.526
TNASP	0.539	0.589	0.640	0.689	0.724
Neural Predictor [†] + SE	0.377	0.433	0.602	0.652	0.649
NAO [‡] + SE	0.511	0.511	0.514	0.529	0.528
TNASP + SE	0.565	0.594	0.642	0.690	0.726

Table 2: Comparison with other methods on NAS-Bench-201. We calculate the Kendall's Tau by predicting the accuracy of all architectures in NAS-Bench-201 and comparing them with ground truths. †: re-implemented by ourselves. ‡: implemented based on their released model.



4.3 Search results on DARTS search space

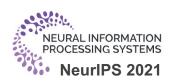
Architecture	Test Accuracy(%)	#Params.(M)	Search Cost(G·D)
DenseNet-BC [20]	96.54	25.6	-
PyramidNet-BC [18]	96.69	26.0	-
Random search baseline	96.71 ± 0.15	3.2	-
NASNet-A [54] + cutout	97.35	3.3	1,800
NASNet-B [54] + cutout	96.27	2.6	1,800
NASNet-C [54] + cutout	96.41	3.1	1,800
AmoebaNet-A [35] + cutout	96.66 ± 0.06	3.2	3,150
SNAS [46]	97.02	2.9	1.5
ENAS [34] + cutout	97.11	4.6	0.5
DARTS [27] + cutout	97.24 ± 0.09	3.4	4
NAONet [31]	97.02	28.6	200
PNAS [26] + cutout	97.17 ± 0.07	3.2	-
GHN [51] + cutout	97.16 ± 0.07	5.7	0.8
D-VAE [52]	94.80	-	-
NGE [23] + cutout	97.40	-	0.1
BONAS-A [37] + cutout	97.31	3.45	2.5
CTNAS [8] + cutout	97.41 ± 0.04	3.6	0.3
TNASP + cutout(avg)	$\textbf{97.43} \pm \textbf{0.04}$	3.6 ± 0.1	0.3
TNASP + cutout(best)	97.48	3.7	0.3

Table 3: Comparison with other methods in DARTS [27] search space on CIFAR-10. "cutout": evaluate the searched cells using cutout [13] data augmentation. "G·D": GPU days.

4.4 Search results on ProxylessNAS search space

Method	Params(M)	FLOPs(M)	Top-1 (%)	Top-5 (%)
FBNet-C [15]	5.5	375	74.9	92.1
Proxyless (GPU) [1]	7.0	457	75.1	92.5
SPOS [6]	5.4	472	74.8	-
RLNAS [17]	5.3	473	75.6	92.6
Neural Predictor [14]	6.4 *	536 *	74.75 ± 0.09	-
NAO [10]	6.5	590	75.5	92.5
TNASP-A	5.0	433	75.1	92.3
TNASP-B	5.1	478	75.5	92.5
TNASP-C	5.3	497	75.8	92.7

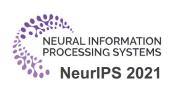
Table 8: Comparison with other methods on ImageNet. *: We compute these information by their released model structure.



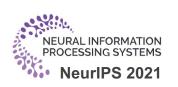
Reference:

- [1] Elsken T, Metzen J H, Hutter F. Neural architecture search: A survey[J]. The Journal of Machine Learning Research, 2019, 20(1): 1997-2017.
- [2] Luo R, Tian F, Qin T, et al. Neural architecture optimization[J]. arXiv preprint arXiv:1808.07233, 2018.
- [3] Zhang M, Jiang S, Cui Z, et al. D-vae: A variational autoencoder for directed acyclic graphs[J]. arXiv preprint arXiv:1904.11088, 2019.
- [4] White C, Neiswanger W, Savani Y. Bananas: Bayesian optimization with neural architectures for neural architecture search[J]. arXiv preprint arXiv:1910.11858, 2019, 1(2).
- [5] Shi H, Pi R, Xu H, et al. Bridging the gap between sample-based and one-shot neural architecture search with bonas[J]. arXiv preprint arXiv:1911.09336, 2019.
- [6] Ru B, Wan X, Dong X, et al. Interpretable Neural Architecture Search via Bayesian Optimisation with Weisfeiler-Lehman Kernels[J]. arXiv preprint arXiv:2006.07556, 2020.
- [7] Chen Y, Guo Y, Chen Q, et al. Contrastive Neural Architecture Search with Neural Architecture Comparators[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 9502-9511.

Thank You!



Extra Slides



4.1 Ranking results on NAS-Bench-101

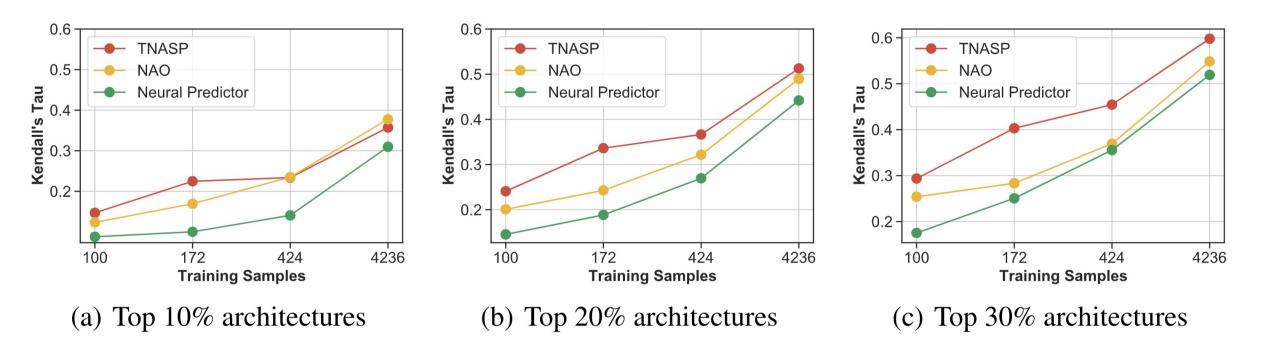
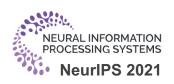


Figure 5: Ranking results over different top portions of good architectures.



4.3 Visual results on DARTS search space

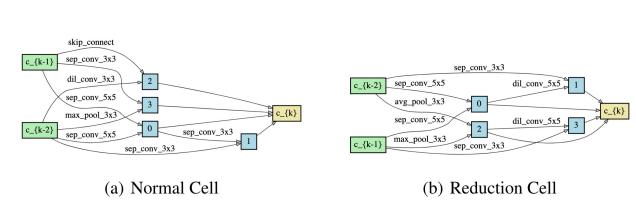


Figure 3: Our best searched normal cell and reduction cell.

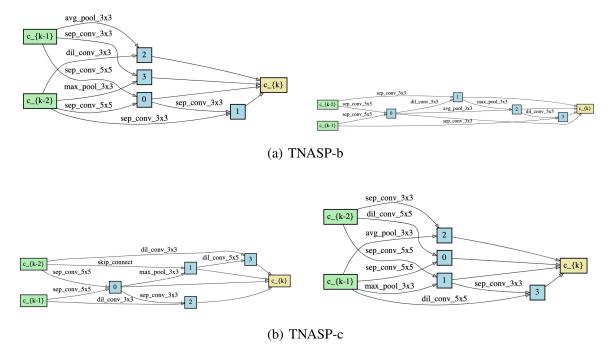


Figure 6: Other searched cells in DARTS search space. Left side are normal cells and right side are reduction cells.

4.4 Visual results on ProxylessNAS search space

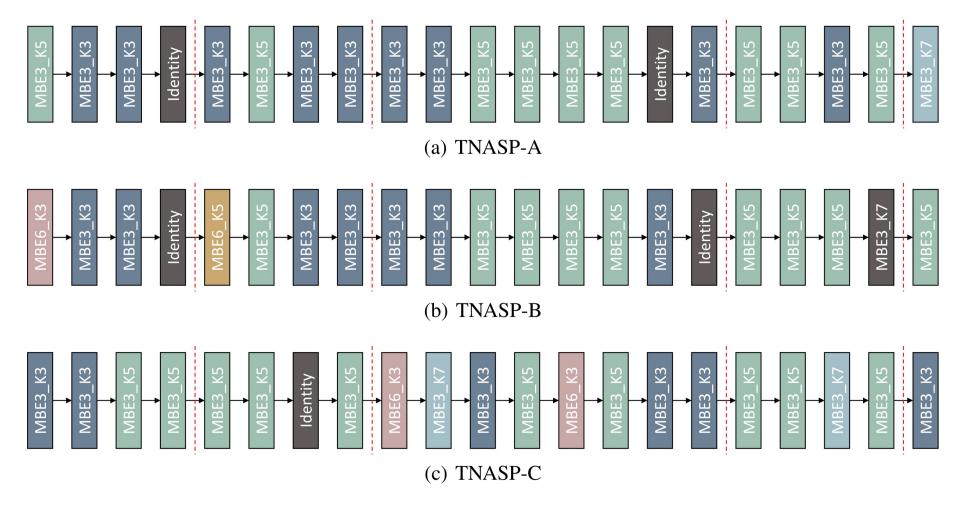


Figure 7: Our searched architectures in MobileNet-like search space.

