Optimal Underdamped Langevin MCMC Method

Zhengmian Hu, Feihu Huang, Heng Huang

Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA.

Sampling by Underdamped Langevin MCMC

Problem:	Sampling from $p(x) \propto exp(-\sum_{i=1}^{N} f_i(x))$.
Assumptions:	$mI \preccurlyeq abla^2 f(x), \ abla^2 f_i(x) \preccurlyeq rac{L}{N}I.$
(ULD)	$dX_t = V_t dt, \ dV_t = -\nabla f(X_t) dt - \gamma V_t dt + \sqrt{2\gamma} dB_t.$
ULD MCMC:	Markov chain by discretization of ULD.
Oracles:	Gradient oracle $\nabla f_i(x)$. Weighted Brownian oracle. No function oracle.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Gradient Complexity

Table: Number of gradient evaluation of $\nabla f_i(x)$ needed to sample from *m*-strongly-log-concave distributions up to $\varepsilon \sqrt{d/m}$ accuracy in 2-Wasserstein distance

Algorithms	Gradient complexities
ULA (A. Dalalyan, 2017; Durmus, Moulines, et al., 2019)	$\widetilde{O}(N\varepsilon^{-2})$
LPM (A. S. Dalalyan, Riou-Durand, et al., 2020)	$\widetilde{O}(Narepsilon^{-1})$
RMM (Shen and Lee, 2019)	$\widetilde{O}(N\varepsilon^{-rac{2}{3}})$
ALUM (Ours)	$\widetilde{O}(Narepsilon^{-rac{2}{3}})$
SG-LPM (Cheng et al., 2018)	$\widetilde{O}(arepsilon^{-2})$
SVRG-LPM (Zou, Xu, and Gu, 2018)	$\widetilde{O}(N+arepsilon^{-1}+N^{rac{2}{3}}arepsilon^{-rac{2}{3}})$
SVRG-ALUM (Ours)	$\widetilde{O}(N+N^{rac{2}{3}}arepsilon^{-rac{2}{3}})$
SAGA-ALUM (Ours)	$\widetilde{O}(N+N^{rac{2}{3}}arepsilon^{-rac{2}{3}})$

AcceLerated ULD-MCMC (ALUM)

$$(\mathsf{ULD}) \qquad \qquad dX_t = V_t dt, \ dV_t = -\nabla f(X_t) dt - \gamma V_t dt + \sqrt{2\gamma} dB_t.$$

Estimation at time point h by only single gradient evaluation:

$$\begin{aligned} X_{h}^{(o)} &= X_{0} + \psi_{1}(h)V_{0} - h\psi_{1}(h - ah)\nabla f(X_{ah}^{(e)}) + e_{x,[0,h]}, \\ V_{h}^{(o)} &= \psi_{0}(h)V_{0} - h\psi_{0}(h - ah)\nabla f(X_{ah}^{(e)}) + e_{v,[0,h]}, \\ X_{ah}^{(e)} &= X_{0} + \psi_{1}(ah)V_{0} \quad -\psi_{2}(ah)\nabla f(X_{0}) \quad + e_{x,[0,ah]}, \end{aligned}$$

Similar to RMM (Shen and Lee, 2019) but save half gradient evaluations.

Surprisingly, dropping this term doesn't hinder the convergence too much. The asymptotic iteration complexity has same d, ε dependence. In high precision regime (ε is small enough), the κ dependence is also the same.

Variance Reduced ALUM (VR-ALUM)

$$\widetilde{\nabla}_{k}^{\text{SVRG}} = \frac{N}{b} \sum_{i \in B_{k}} \left(\nabla f_{i}(x_{k}^{(e)}\widetilde{\nabla}) - \nabla f_{i}(\overline{x}) \right) + \sum_{i=1}^{N} \nabla f_{i}(\overline{x}).$$
(Johnson and Zhang, 2013)

$$\widetilde{\nabla}_{k}^{\mathsf{SAGA}} = \frac{N}{b} \sum_{i \in B_{k}} \left(\nabla f_{i}(x_{k}^{(e)\widetilde{\nabla}}) - \nabla f_{i}(\phi_{k}^{i}) \right) + \sum_{i=1}^{N} \nabla f_{i}(\phi_{k}^{i}).$$
(Defazio, Bach, and Lacoste-Julien, 2014)

Bounded MSE property - control the gradient error for different gradient estimations in a unified approach.

$$\begin{split} \mathbb{E}[\|\widetilde{\nabla}_{k+1} - \nabla f(x_{k+1}^{(e)})\|_2^2] &\leq \Theta \max_{0 \leq i \leq k} Q_i, \\ \|\widetilde{\nabla}_0 - \nabla f(x_0^{(e)})\|_2^2 &= 0, \\ Q_k &= N \sum_{i=1}^N \|\nabla f_i(x_{k+1}^{(e)}) - \nabla f_i(x_k^{(e)})\|_2^2. \end{split}$$

Upper Bounds

Problem Iteration complexity Accuracy $\varepsilon \sqrt{d/m}$ in $W_2 = \widetilde{O}(\max(\kappa/\varepsilon^{\frac{2}{3}}, \kappa^2))$ Sampling $O(\max(T\kappa^{\frac{2}{3}}\varepsilon^{-\frac{2}{3}}d^{\frac{1}{3}},T\kappa))$ ε in \mathbb{L}_2 Approximating Table: Gradient complexity for SAGA-ALUM and SVRG-ALUM. Problem Accuracy Gradient complexity $\varepsilon_{\sqrt{d/m}}$ in $W_2 = \widetilde{O}(N + (b\kappa + N^{\frac{2}{3}}\kappa^{\frac{4}{3}})(1 + \varepsilon^{-\frac{2}{3}}) + b\kappa^2$ Sampling $O(N + T(\kappa b + \kappa^{\frac{1}{3}}N^{\frac{2}{3}}) + T\kappa^{\frac{2}{3}}d^{\frac{1}{3}}\varepsilon^{-\frac{2}{3}}(b + N^{\frac{2}{3}}))$ Approximating ε in \mathbb{L}_2

Table: Iteration complexities for full gradient ALUM.

Corollary

When $b \leq O(N^{\frac{2}{3}})$, the gradient complexity of SAGA-ALUM and SVRG-ALUM for sampling problem is $\widetilde{O}(N + N^{\frac{2}{3}}\varepsilon^{-\frac{2}{3}})$ and their gradient complexity for ULD approximation problem is $O(N + d^{\frac{1}{3}}N^{\frac{2}{3}}\varepsilon^{-\frac{2}{3}})$.

Lower Bounds for Approximation Error

Problem class: \mathcal{U} are all strongly convex and uniformly smooth functions f_i such that mean of $\frac{1}{Z}exp(-\sum_{i=1}^{N}f_i(x))$ is not too far from origin. Single component gradient oracle: $\nabla f_i(x)$. Weighted Brownian oracle: $\int_0^T e^{\theta s} dB_s(\omega)$. Ground truth: $X_T(\omega, U)$. All possible randomized algorithms with *n* evaluations of oracles: \mathcal{A}_n .

Worst case approximation error:

$$e_{\mathcal{A},\mathcal{U}}^2 := \inf_{A \in \mathcal{A}} \sup_{U \in \mathcal{U}} \mathbb{E}_{\omega \in \mathbb{P}} \mathbb{E}_{\widetilde{\omega} \in \widetilde{\mathbb{P}}} \|X_{\mathcal{T}}(\omega, U) - A(\omega, \widetilde{\omega}, U)\|_2^2$$

Lower Bounds for Approximation Error

Theorem

When n < N which means that gradient evaluation number is less than components number, we have $e_{\mathcal{A}_n,\mathcal{U}}^2 \ge dC_1$, where C_1 is positive and independent of d, N, and n.

Theorem

When gradient evaluation number n is multiple of N, we have $e_{\mathcal{A}_n,\mathcal{U}}^2 \ge dC_2 \frac{N^2}{n^3}$, where C_2 is positive and independent of d, N, and n.

Corollary

For small enough target accuracy ε such that $\varepsilon^2 < dC_1$, in order to achieve $e_{\mathcal{A}_n,\mathcal{U}} \leq \varepsilon$, the minimum number of single component gradient oracle evaluations is $\Omega(N + d^{\frac{1}{3}}N^{\frac{2}{3}}\varepsilon^{-\frac{2}{3}})$.

This lower bound matches the upper bound in the dependence of d, components number N, and approximation accuracy ε .

In what sense VR-ALUM is optimal (or not)?

Optimal for approximating problem in the sense that any ULD MCMC algorithm with better dependence on dimension d, components number N, approximation accuracy ε in gradient complexity doesn't exist.

Not necessarily optimal in sampling error, κ dependence, or when other assumptions and oracles exist.

Experiments

VR-ALUM constantly outperforms other discretizations of ULD.

Approximating efficiency is not sensitive to batch size when batch is relatively small.

Thank you

