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Time Series Forecasting

• Important and well studied machine learning problem

• Covers wide-range of domains: 

• economics 

• retail 

• weather forecasting

• epidemiology

• Given: 

• Historical sequences from past

• Current sequence

• Predict: Future sequence values
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Why forecasting?

• Enable reliable and robust decision making in real world
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Sales forecast
Order more supplies?

Covid-19 Cases Lockdown policy



Probabilistic forecasts

• Predictions with uncertainty

– Mean: Most probable point estimate

– Confidence interval: Range around mean where target lies 

with high confidence
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Why Accurate AND Well-Calibrated 
forecasts?

• Accurate: Mean of forecast distribution close to ground truth

• Well-Calibrated: Confidence intervals cover ground truth 

– Especially during uncertain or anomalous scenarios

– When point forecasting is harder
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Example: Flu Forecasting

• Predict influenza incidence for next 4 weeks

• Important for public health policy, intervention planning, etc.
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CDC’s wILI Dataset

• CDC’s ILINet surveillance system collects publicly available 
wILI (weighted Influenza-like estimates) : 

• anonymized aggregated indicator of out-patient 
cases with flu-like symptoms

• wILI signals for US and 8 HHS regions

• Weekly wILI available for 2004 - present
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Real-time Forecasting Setup
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1. Given Data

Data of historical sequences

Sequence till current week

2. Train Model
3. Forecast future 

incidence 

distribution

(1-4 weeks in future)



Current flu forecasting models
• Most methods focus on point-predictions [Reich+ PNAS 

2018]

• Other state-of-art probabilistic methods like Empirical Bayes 
[Brooks+ Comp Bio 2015], Delta Density [Brooks+ PLOS 
2018], Gaussian Process [Zimmer+ NIPS 2020], EpiDeep
[Adhikari+ KDD 2019] 

• Do not focus on producing well-calibrated forecasts.

• Can’t adapt or provide reliable forecast confidence on novel 
patterns
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Our Goal

• Develop deep probabilistic model for accurate and well-
calibrated time-series forecasting

• Explainable forecasts from complex temporal similarities with 
historical season – also enables sound decision making
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Outline

• Motivation

• Overall Idea & Approach

• EpiFNP Framework Details

• Experiments

• Conclusion
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Deep Sequential models

• Leverage Neural models like GRU, LSTM, RNN, 
Epideep

• Captures long term patterns

• Widely successful for point-forecasts

• But …

• Doesn’t learn probability density of prediction
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Recent deep learning approaches for 
calibrated forecasting

• Bayesian Deep Learning [McKay Neuro. Comp 1992, Louizos+ 
ICML 2017]:

• Difficult to set useful priors, intractable inference

• Deep ensembles [Lakshminarayan+ NIPS 2017]: 

• compute intensive

• Hard to estimate uncertainty very well [Kong+ ICML 2020]
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Non-parametric GP approach

• Gaussian process based non-parametric model

• Directly leverage similarity with training sequences as 
part of functional of distribution

• Quantify uncertainty based on similarity with previously seen 

patterns

• But …

• Need to capture complex long-term sequential patterns

• Inefficient for high-dimensional data
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Our approach: Neural Gaussian 
Process

• Marry two approaches: 

• Leverage Deep sequential models to capture complex 
temporal patterns as low-dimensional representation

• Use flexible non-parametric modelling to learn well-
calibrated and accurate predictions
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Accurate and Well-
calibrated neural 
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Recent work

• Functional Neural Process [Louizos+ NeurIPS 2020]

• Non-parametric modeling framework

• Used static datasets

• Recurrent Neural Process [Qin+ 2020]

• Based on Neural Process [Garnelo+ NeurIPS 2020]

• Uses attention over training sequences
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Our contribution: New FNP framework for sequential data 
leveraging complex stochastic latent correlations with training 

data to derive the predictive distribution



Outline

• Motivation

• Overall Idea & Approach

• EpiFNP Framework Details

• Experiments

• Conclusion
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Training and Reference Set

• EpiFNP models predictive distribution based on

similarity to sequences seen in past
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Training and Reference Set

• Sequences on which we model similarity – Reference 

sequences/set

• Input sequence on which we train/forecast future 

sequences – Training sequences/set
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EpiFNP – Overview (I)

• Gaussian process based Neural Process architecture

• Three components
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EpiFNP – Overview (II)

• Uses Deep Sequential Modules (GRU) to stochastically 
model sequences in latent space – Probabilistic Neural 
Sequence Encoder
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EpiFNP – Overview (III)

• Induces correlations with past sequences using similarity in 
latent space – Stochastic Correlation Graph
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EpiFNP – Overview (IV)

• Uses representations of correlated sequences from SCG, 
current season’s representation to output predictive 
distribution - Predictive Distribution Parameteriztion
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Probabilistic Neural Encoder

• Encodes current week and historical sequences into a latent 
vector distribution – Multi-variate Gaussian

• Quantify uncertainty of input sequence

• GRU with self-attention over hidden states to get a 
deterministic embedding of mean and variance

• Sample from the Gaussian as latent representation of 
sequence
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Stochastic Correlation Graph

• Leverages similarity between current (training/test set) and 
historical sequences (reference set) in latent space

• Samples edges proportional to similarity in latent space 
using RBF kernel
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Connect an edge with probability



Stochastic Correlation Graph

• Construct a bipartite network between historical sequences 
and training/input sequences
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Stochastic correlation graph

• Derive local latent variable from connected nodes of SCG
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Deriving Prediction distribution

• Combines uncertainty from different perspectives to 
parameterize predictive distribution:

• Sequence embedding distribution for current sequence –
input specific temporal patterns and uncertainty

• Local latent embedding from SCG – relation and uncertainty 
based on correlation with training data

• Combination of all reference sequences – global uncertainty 
of training data
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EpiFNP training

• All components are trained end-to-end on training set of 
past data

• Input data for training formed from prefix of historical 
sequences
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Variational Inference

• To overcome intractable marginalization over latent random 
variables:

• Model variational distribution of local latent variable for all 
sequences 

Approximates

• Variational ELBO loss used to update parameters via 
Stochastic Gradient Descent based training.
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Outline

• Motivation

• Overall Idea & Approach

• EpiFNP Framework Details

• Experiments

• Conclusion
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Baselines – Epidemic Forecasting

• Epidemiological Baselines: Previous widely used and SOTA 
epidemic forecasting baselines

• SARIMA – Classical Time series forecasting model

• Empirical Bayes (EB) – Won previous flu forecasting 
challenges

• Delta Density (DD) – widely used top non-parametric 
model

• EpiDeep (ED) – A top-performing deep Learning model 
that leverages sequence similarity

• Gaussian Process (GP) – A recent top performing model

Kamarthi et.al 2021 35



Baselines – General ML Time-series

• General Deep Probabilistic Baselines: Previous deep 
probabilistic methods for general sequence prediction tasks

• Monte Carlo Dropout (MCDP) on GRU

• Bayesian Neural Network (BNN)

• Recurrent Neural Process (RNP) – Modification of  
Vanilla Neural Process on sequences
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Evaluation metrics – Accuracy 

• Accuracy metrics

• Root Mean Squared Error (RMSE) [Adhikari+ KDD 2018]

• Mean Absolute Percentage Error (MAPE) [Reich+ PNAS 
2018]

• Log Score (LS): widely used in epidemic forecasting 
literature [Reich+ PNAS 2018]. Measure Log likelihood 
of prediction in small interval around ground truth
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Evaluation metrics - Calibration 

• Calibration Score (CS): 

• k(c) as fraction of ground truth predictions that fall within 
confidence level c of prediction distribution. 

• CS measures absolute difference between c and k(c) 
[Kuleshov+ ICML 2018]
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Obs 1: EpiFNP provides accurate 
point-predictions
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• 13% and 42% better in RMSE and MAPE scores 
respectively

Avg. RMSE of EpiFNP and Baselines

(over US National and 8 HHS regions)



Obs 2: EpiFNP provides calibrated 
predictions
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• 2.5 times better LS and 20% better CS compared to best 
baseline

Avg. LS of EpiFNP and Baselines Avg. CS of EpiFNP and Baselines



Obs 3: Adapting to novel patterns

• Evaluate on novel H1N1 (2009/10) and Covid-19 seasons

• Captures unprecedented patterns

• 18-31% improvements in accuracy scores and 3.7 better 
calibration scores
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Predictions and uncertainty 

intervals in Covid-19 season

Predictions and uncertainty 

intervals in H1N1 season

Novel 3rd peak

Novel early peak



Obs 4: EpiFNP chooses most similar 
historical seasons

• Observed most frequently sampled historical sequences 
from SCG

• Automatically identifies similar patterns from historical 
seasons
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Most similar seasons chosen by 

EpiFNP for Week 21 of 2015/16 

season

Most frequently sampled SCG 

neighbors of input sequence for 

Week 21 of 2015/16 season
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Conclusion
• Introduced EpiFNP: novel state-of-art deep probabilistic time 

series forecasting model for accurate and well-calibrated
prediction

• DSMs + NGP = accuracy and calibration

• Flexible probabilistic modelling 

• Leverage similarity with complex patterns in training data

• Setting for flu forecasting: Consistently outperformed top 
baselines in accuracy and calibration by over 2.5x and 20% 
respectively

• Adapted to novel patterns and provided explainable 
prediction by identifying similar historical patterns and 
producing reliable uncertainty 
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For Future:
Capture and integrate 
sources of 
uncertainty from 
different data sources



Thank You!
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