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Introduction
Endowing a collection of objects with a graph structure allows one to encode pairwise
relationships among its elements. These relations often possess a natural notion of direction.
Such datasets are naturally modeled by directed graphs.

Figure: Visualization of WebKB-Cornell.
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Introduction

The directed graph is a ubiquitous data structure in the real world.

The inherent relations are asymmetric.

(a) Citation networks (b) Email networks (c) Social networks

Figure: Some popular directed structures.

MagNet: A Neural Network for Directed Graphs Neural Information Processing Systems, 2021 3 / 21



Graph Neural Networks

One of the popular forms of graph neural networks, GCN (Kipf, et al. 2017)

Z = D̃−
1
2 ÃD̃−

1
2 XΘ,

Ã = A + IN , D̃(u, u) =
∑

v∈N (u)

Ã(u, v),

X ∈ RN×d , Θ ∈ Rd×d ′

GCN is obtained from the approximation from the spectral graph convolution on
undirected graphs.
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Spectral Graph Convolution on Undirected Graphs

Consider a simple spectral convolution on the undirected graph,

gθ ? x = Udiag(θ)U>x ,

L = IN − D−
1
2 AD−

1
2 = UΛU>, x ∈ RN , θ ∈ RN

U>x is the graph Fourier transform of x .

Spectral graph convolution requires a symmetric Laplacian matrix to get a complete set
of eigenvectors.

It is a popular step to symmetrize the adjacency matrix first to handle directed graphs.
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Graph Convolution on Directed Graphs (Digraphs)

Existing graph convolution for directed graphs also creates symmetric Laplacian
matrices.

Digraph Convolution based on approximated personalized PageRank (Tong, et al. 2020)

Z =
1

2

(
P + P>

)
XΘ

P = Π
1
2
appr P̃Π

− 1
2

appr , P̃ = D̃−1Ã, Ã = A + IN
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Symmetric Representation

Symmetric representation may lose critical information for downstream tasks.

(a) Directed adjacency (b) Symmetrized adjacency

Figure: The asymmetric adjacency matrix (a) and its symmetrized version (b).
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Motivation

There are four types of edges in directed graphs:

Undirected edges

Incoming edges

Outgoing edges

No edge

A proper Laplacian for directed graphs should distinguish
information from the four types of edges and have a
complete set of eigenvectors.

Figure: Different types of edges.
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Motivation

To get a complete set of eigenvectors, the Laplacian matrix can be complex-valued
Hermitian besides symmetric.

Encoding edge weights information in the magnitude matrix.

Encoding direction information in the phase matrix.

Magnetic Laplacian is one of the proper choices. The name originates from its
interpretation as a quantum mechanical Hamiltonian of a particle under magnetic flux.

Magnetic Laplacian is constructed based on Hermitian adjacency matrix.
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Hermitian Adjacency Matrix

Phase matrix for direction distinguishment

Θ(q)(u, v) := 2πq(A(u, v)− A(v , u)), q ≥ 0

exp
(
iΘ(q)

)
(u, v) := exp

(
iΘ(q)(u, v)

)
Hermitian adjacency matrix

H(q) := As� exp
(
iΘ(q)

)
, As =

1

2
(A + A>)
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Representation Capability of Hermitian Adjacency Matrix

In Hermitian adjacency matrix:

Incoming and outgoing edges are complex conjugate.

H(q)(u, v) = a + ib, H(q)(v , u) = a− ib,

for (u, v) ∈ E and (v , u) /∈ E

Undirected edges are all 1s.

H(q)(u, v) = H(q)(v , u) = 1

No edge is 0.
H(q)(u, v) = 0
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Special Forms of Hermitian Adjacency Matrix

Hermitian adjacency matrix is symmetric when q = 0.

H(0) = As

Directed edges in Hermitian adjacency matrix are pure imaginary when q = 0.25.

H(.25)(u, v) = −H(.25)(v , u) =
i

2
,

for (u, v) ∈ E and (v , u) /∈ E
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Magnetic Laplacian

Regular Laplacian

LU := Ds − As ; LN := IN − D
− 1

2
s AsD

− 1
2

s

Magnetic Laplacian

L
(q)
U := Ds − H(q) = Ds − As� exp

(
iΘ(q)

)
Normalized Magnetic Laplacian

L
(q)
N := IN −

(
D
− 1

2
s AsD

− 1
2

s

)
� exp

(
iΘ(q)

)
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Magnetic Laplacian

Theorem 1

For all q ≥ 0, both L
(q)
U and L

(q)
N are positive semidefinite.

Theorem 2

For all q ≥ 0, the eigenvalues of L
(q)
N are contained in the interval [0, 2].
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MagNet

MagNet in ChebNet form (Defferrard, et al. 2016)

Z =
K∑

k=0

Tk(L̃)XΘk , L̃ = L
(q)
N − IWen

MagNet in GCN form (Kipf, et al. 2017)

Z = D̃
− 1

2
s ÃsD̃

− 1
2

s � exp
(
iΘ(q)

)
XΘ

The computation complexity is comparable with GCN (Kipf, et al. 2017).
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Architectures
Complex activation function

σ(z) =

{
z if − π/2 ≤ arg(z) < π/2
0 otherwise

Framework

Figure: MagNet with two layers applied to node classification.
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Experiment Settings

We evaluate MagNet on both node classification and link prediction tasks.

We select the MagNet in ChebNet form and set K = 1.

Parameter q in the Hermitian adjacency matrix is selected based on cross-validation.

MagNet reduces to ChebNet when q = 0.
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Node Classification Results
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Figure: Testing accuracy of node classification.
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Link Prediction Results
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Figure: Testing accuracy of link prediction on Citeseer.
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Summary

We have introduced MagNet, a neural network for directed graphs based on the magnetic
Laplacian.

This network can be viewed as the natural extension of spectral graph convolutional
networks to the directed graph setting.

We demonstrate the effectiveness of our network by node classification and link prediction
tasks.
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