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Multi-task Linear Regression
Yg = LXg + Eg Spatio-temporal generative model
Yg ∈ RM×T for g = 1, . . . ,G , G :#sample blocks or tasks
Xg ∈ RN×T M:#measurements or observations, T :#Samples,
Eg ∈ RN×T N:#coefficients or source components,
L ∈ RM×N forward matrix (known): maps Xg to Yg

Goal: Estimate {Xg}G
g=1 given L and {Yg}G

g=1:
I Inverse problem in physics
I Multiple measurement vector (MMV) recovery problem in signal processing

Temperature monitoring of 
climate [S. Beirle et al. 2003]

Temperature monitoring of 
CPU/GPU [J. Ranieri et al. 2012]

EEG/MEG Source Localization
 [H. Janati et al. 2020]

fMRI data analysis
 [M. B. Cai,  et al. 2020]
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Hierarchical Bayesian Learning
Spatio-temporal dynamics of model parameters and noise are modeled to
have Kronecker product covariance structure.

Probabilistic graphical model:

Temporal 
Covariance

Spatial 
Covariance of 

Noise

Spatial
Covariance
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Hierarchical Bayesian Inference and Type-II Loss

Posterior source distribution: p(vec(X>g )|vec(Y>g ),Γ,Λ,B) ∼ N (x̄g ,Σx)
with

x̄g = vec(X̄>g ) = Σ0D>Σ̃−1
y yg

Σx = Σ0 −Σ0D>Σ̃−1
y DΣ0

Σ̃y = Σy ⊗ B
Σy = LΓL> + Λ ,

where D = L⊗ IT .

Γ, Λ, B are learned by minimizing the negative log marginal likelihood
(Type-II) loss, − log p(Y|Γ,Λ,B).

Type− II Loss : Lkron(Γ, Λ, B) = T log |Σy|+ M log |B|+ 1
G

G∑
g=1

tr(Σ−1
y Yg B−1Y>g )
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Challenges

Type− II Loss : Lkron(Γ, Λ, B) = T log |Σy|+ M log |B|+ 1
G
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Type− II Loss : Lkron(Γ, Λ, B) = T log |Σy|+ M log |B|+ 1
G

G∑
g=1

tr(Σ−1
y Yg B−1Y>g )

1 Non-convex Type-II ML loss function: non-trivial to solve.
2 Most contributions in the literature neglect the temporal structure

and are based on MAP (Type-I) estimation.
3 A few works that model the temporal dynamics often involve a

computationally demanding inference scheme mostly based on
expectation-maximization (EM).
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Our Contributions

I Derive novel Type-II algorithms that automatically learn the
temporal structure

1 Exploit the intrinsic Riemannian geometry of temporal
autocovariance matrices.

2 For stationary dynamics described by Toeplitz matrices, we
employ the theory of circulant embeddings.

I Devise an efficient inference based on majorization-minimization
optimization with guaranteed convergence properties.

To this end, we present a series of theorems resulting in a novel and
efficient hierarchical Bayesian inference for spatio-temporal multi-task
regression models.
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Convex Majorizing Functions

Theorem (Majorizing function for temporal covariance update)
Optimizing Lkron(Γ,Λ,B) with respect to B is equivalent to optimizing the
following convex surrogate function, which majorizes Lkron(Γ,Λ,B):

Ltime
conv(Γk ,Λk ,B) = tr

(
(Bk)−1B

)
+ tr(Mk

timeB−1),

where Mk
time := 1

MG
∑G

g=1 Y>g
(
Σk

y
)−1 Yg .

Lkron(Γ, Λ, B) = T log |Σy|+ M log |B|+ 1
G

G∑
g=1

tr(Σ−1
y Yg B−1Y>g )
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Theorem (Majorizing function for temporal covariance update)
Optimizing Lkron(Γ,Λ,B) with respect to B is equivalent to optimizing the
following convex surrogate function, which majorizes Lkron(Γ,Λ,B):

Ltime
conv(Γk ,Λk ,B) = tr

(
(Bk)−1B

)
+ tr(Mk

timeB−1),

where Mk
time := 1

MG
∑G

g=1 Y>g
(
Σk

y
)−1 Yg .

Theorem (Majorizing function for spatial covariance update)
Let H = diag(h), h = [γ1, . . . , γN , σ

2
1 , . . . , σ

2
M ]>, Φ := [L, I], and Σy = ΦHΦ>.

Then, optimizing Lkron(Γ,Λ,B) with respect to H is equivalent to minimizing the
following convex surrogate function, which majorizes Lkron(Γ,Λ,B):

Lspace
conv (Γ,Λ,Bk) = Lspace

conv (H,Bk) = tr
(
Φ>(Σk

y )−1ΦH
)

+ tr
(
Mk

SNH−1) ,
where Mk

SN := HkΦ>(Σk
y )−1Mk

space(Σk
y )−1ΦHk ,

Mk
space := 1

TG
∑G

g=1 Yg (Bk)−1Y>g .
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Riemannian Update on the Manifold of P.D. Matrices
Theorem (Geometric mean)
The cost function Ltime

conv(Γk ,Λk ,B) is strictly geodesically convex with respect to
the P.D. manifold and its minimum with respect to B can be attained by iterating
the following update rule until convergence:

Bk+1 ← (Bk)1/2
(

(Bk)−1/2Mk
time(Bk)−1/2

)1/2

(Bk)1/2 ,

which leads to a majorization-minimization (MM) algorithm with convergence
guarantees  Full Dugh
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Riemannian Update for Toeplitz Matrices
Theorem (Temporal covariance update using circulant embedding)
Let Ltime

conv(Γk ,Λk ,B) is constrained to the set of real-valued positive-definite
Toeplitz matrices, B ∈ BL : B = QPQH , where P = diag(p) ∈ RL×L with L > T
be the circulant embedding of B. Then the resulting constrained loss function is
convex in p, and its minimum with respect to p can be obtained by iterating the
following closed-form update rule until convergence:

pk+1
l ←

√
ĝk

l
ẑk

l
for l = 1, . . . , L ,where

ĝ := diag(PkQH(Bk)−1Mk
time(Bk)−1QPk)

ẑ := diag(QH(Bk)−1Q)
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pk+1
l ←

√
ĝk

l
ẑk

l
for l = 1, . . . , L ,where

ĝ := diag(PkQH(Bk)−1Mk
time(Bk)−1QPk)

ẑ := diag(QH(Bk)−1Q)

Theorem (Spatial covariance with diagonal structure)
The cost function Lspace

conv (H,Bk) is convex in h, and its minimum with respect to
h can be obtained according to the following closed-form update rule:

hk+1
i ←

√
gk

i
zk

i
for i = 1, . . . ,N + M ,where

g := diag(Mk
SN)

z := diag(Φ>(Σk
y )−1Φ)
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Full and Thin Dugh
Combining this theoretical work, we developed a novel algorithm called “Dugh”
for joint estimation of spatial and temporal covariances of source and noise.
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Electromagnetic Brain Source Imaging (BSI)
Electro-/Magnetoencephalography (E/MEG): A non-invasive brain
imaging technique with high temporal resolution (order of ms).
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Electromagnetic Brain Source Imaging (BSI)

Ill-posed inverse problem: (#Sensors= 32 ∼ 256 vs #Sources= 103 ∼ 104)

X∗ = argmin
X

‖Y− LX‖2
F︸ ︷︷ ︸

Likelihood:p(Y|X)

+ λ R(X)︸ ︷︷ ︸
Prior:p(X)

1 Type-I MAP methods: `1, `2, `1,2-norms, sparsity in transformed domains (Gabor).
[Pascual-Marqui et al., ’07][Haufe et al, ’08, ’11][Gramfort et al., ’12, ’13][Castaño-Candamil et al., ’15]

2 Type-II ML approaches: different sparse Bayesian learning (SBL) variants ignoring the
temporal dynamics. [Wipf et al., ’09, ’10, ’11][Owen et al, ’12][Cai et al., ’17, ’21]
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Numerical Results
Conclusion I: Dugh consistently outperforms benchmark methods in the BSI
literature according to all evaluation metrics.
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Real Data Analysis of AEF and VEF
Conclusion II: Dugh can provide accurate reconstruction even under extreme SNR
conditions - superior to benchmarks.

5
 t

ri
a

ls

Thin Dugh Full DughMCEeLORETA
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Thank you for your attention!
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