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Highlights

• Law of iterated logarithm for distributed stochastic approx.

• Convergence rate along sample paths where algorithm converges

• Weaker assumptions on the gossip matrix and stepsizes

• A novel concentration result for a sum of martingale differences

• Applies to distributed TD(0) with linear function approximation
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Background

• Reinforcement Learning

- Train machines the same way an infant learns

- Interact with the environment and figure out the optimal action
sequence needed to complete a given task

• Stochastic Approximation (SA)

- Theory provides toolkit for rigorously analyzing RL algorithms

- Iterative algorithms useful to find zeroes or optimal points of
functions, for which only noisy evaluations are possible

• This work: Analyze distributed SA algorithms useful in MARL
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Multi-agent Reinforcement Learning

• Cooperative MARL

• Multiple agents continually interact with an environment

- Agents picks local actions

- Environment reacts to the joint action by transitioning to a new
state and giving each agent a local reward

- Agents gossip about local computations with each other

• Aim: Find action policies that maximize collective rewards

• Usage : Gaming, Robotics, Communications, Power Grids, Finance
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Distributed Stochastic Approximation

• m agents, directed graph G, matrix W ≡ (Wij) ∈ [0, 1]m×m

• Wij ∈ [0, 1] denotes the strength of the edge j −→ i in G

• Update rule at agent i

xn+1(i)︸ ︷︷ ︸
1×d

=
m∑
j=1

Wij xn(j)︸︷︷︸
1×d

+αn [ hi(xn)︸ ︷︷ ︸
hi:Rm×d→Rd

+ Mn+1(i)︸ ︷︷ ︸
1×d

],

where x(i) denotes the i-th row of the matrix x and

Mn+1(i) is the noise in the estimate of hi(xn)

• Joint Update Rule: xn+1︸︷︷︸
m×d

= Wxn + αn[h(xn) +Mn+1]xn+1︸︷︷︸
m×d

= Wxn + αn[h(xn) +Mn+1]xn+1︸︷︷︸
m×d

= Wxn + αn[h(xn) +Mn+1]
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Main Result: Law of Iterated Logarithm

• Let x∗ be a potential limit of the DSA algorithm

• Let E(x∗) be the event {xn → x∗} and tn+1 =
∑n

k=0 αk

• Then, there exists some deterministic constant C ≥ 0 such that

lim sup
n→∞

[αn log tn+1]−1/2∥xn − x∗∥ ≤ C a.s. on E(x∗).lim sup
n→∞

[αn log tn+1]−1/2∥xn − x∗∥ ≤ C a.s. on E(x∗).lim sup
n→∞

[αn log tn+1]−1/2∥xn − x∗∥ ≤ C a.s. on E(x∗).

• Why Law of Iterated Logarithm (LIL)?

Proof uses an LIL for a sum of scaled martingale differences
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Assumptions on the Gossip Matrix W

A1. W is an irreducible aperiodic row stochastic matrix

∃ a unique row vector π ∈ Rm such that πW = π

Thm. 1 in [Mathkar and Borkar, 2016]: A DSA algorithm converges
to an invariant set of the m-fold product of the ODE

ẏ(t) = π︸︷︷︸
1×m

h(1⊤y(t))︸ ︷︷ ︸
m×d

Any such invariant set is a subset of S := {1⊤y : y ∈ Rd} ⊂ Rm×d

Let x∗ = 1⊤y∗, where y∗ is an asymptotically stable equilibrium
of the above ODE (need not be the only attractor)
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Assumptions on h

A2. There exists a neighbourhood U of x∗ such that, for x ∈ U ,

h(x) = −1⊤π(x− x∗)A+ 1⊤πf1(x) + (I− 1⊤π)(B+ f2(x)),

where

A ∈ Rd×d is positive definite, i.e., yAy⊤ > 0 for all y ̸= 0,

B ∈ Rm×d is some constant matrix,

f2 : U → Rm×d is some arbitrary continuous function, while

f1 : U → Rm×d is another continuous function such that

∥1⊤πf1(x)∥ = O(∥1⊤π(x− x∗)∥a), as x→ x∗, (1)

under some norm ∥ · ∥ and for some a > 1
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Assumptions on Stepsize

A3. (αn) is either of Type 1 or Type γ.

Type 1: α(n) = α0/n for a suitably large α0

Type γ : Cn−γ and n−γ(log n)η for γ ∈ (0, 1)

γ > 2/b, where b is the constant that is defined on the next slide
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Assumptions on Noise

A4. Let Fn = σ(x0,M1, . . . ,Mn) and E(x∗) = {xn → x∗}

E(Mn+1|Fn) = 0 a.s.

∃ C ≥ 0 s.t. ∥QMn+1∥ ≤ C (1+ ∥Q(xn − x∗)∥) a.s. on E(x∗),

where Q := I− 1⊤π

∃ a non-random positive semi-definite matrix M such that

lim
n→∞

E(M⊤
n+1π

⊤πMn+1 | Fn) = M a.s. on E(x∗)

∃ b > 2 such that supn≥0 E(∥πMn+1∥b|Fn) < ∞ a.s. on E(x∗).
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Distributed TD(0) with Linear Function Approximation

• Useful for policy evaluation in MARL

• Our result applies since all assumptions hold in this case
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Comparison to Existing Literature

• Existing results on convergence rates mainly look at expectation
bounds or the CLT. However, these

- either require the gossip matrix to be doubly stochastic

- or require stepsizes to be square-summable

- do not say about the decay rates along different sample paths
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Future Directions

• Scaling matrix (i.e., A) in each hi needs to be the same

• Dynamic communication protocols, i.e., W changes with time

• Two-timescale distributed SA algorithms

• Distributed Q-learning

12




