A Law of Iterated Logarithm for Multi-Agent **Reinforcement Learning**

- Law of iterated logarithm for distributed stochastic approx.
- Convergence rate along sample paths where algorithm converges
- Weaker assumptions on the gossip matrix and stepsizes
- A novel concentration result for a sum of martingale differences
- Applies to distributed TD(0) with linear function approximation

Background

- · Reinforcement Learning
 - Train machines the same way an infant learns
 - Interact with the environment and figure out the optimal action sequence needed to complete a given task
- Stochastic Approximation (SA)
 - Theory provides toolkit for rigorously analyzing RL algorithms
 - Iterative algorithms useful to find zeroes or optimal points of functions, for which only noisy evaluations are possible
- This work: Analyze distributed SA algorithms useful in MARL

Multi-agent Reinforcement Learning

- Cooperative MARL
- Multiple agents continually interact with an environment
 - Agents picks local actions
 - Environment reacts to the joint action by transitioning to a new state and giving each agent a local reward
 - Agents gossip about local computations with each other
- Aim: Find action policies that maximize collective rewards
- Usage : Gaming, Robotics, Communications, Power Grids, Finance

Distributed Stochastic Approximation

- *m* agents, directed graph \mathcal{G} , matrix $W \equiv (W_{ij}) \in [0, 1]^{m \times m}$
- $W_{ij} \in [0, 1]$ denotes the strength of the edge $j \longrightarrow i$ in \mathcal{G}
- Update rule at agent *i*

$$\underbrace{\mathbf{x}_{n+1}(i)}_{1\times d} = \sum_{j=1}^{m} W_{ij} \underbrace{\mathbf{x}_{n}(j)}_{1\times d} + \alpha_{n} \left[\underbrace{h_{i}(\mathbf{x}_{n})}_{h_{j}:\mathbb{R}^{m\times d} \to \mathbb{R}^{d}} + \underbrace{M_{n+1}(i)}_{1\times d} \right],$$

where x(i) denotes the *i*-th row of the matrix x and $M_{n+1}(i)$ is the noise in the estimate of $h_i(x_n)$

• Joint Update Rule: $\underbrace{x_{n+1}}_{m \times d} = Wx_n + \alpha_n[h(x_n) + M_{n+1}]$

Main Result: Law of Iterated Logarithm

- Let x_* be a potential limit of the DSA algorithm
- Let $\mathcal{E}(x_*)$ be the event $\{x_n \to x_*\}$ and $t_{n+1} = \sum_{k=0}^n \alpha_k$
- Then, there exists some deterministic constant $C \ge 0$ such that

$$\limsup_{n\to\infty} \left[\alpha_n \log t_{n+1}\right]^{-1/2} \|x_n - x_*\| \le C \quad \text{a.s. on } \mathcal{E}(x_*).$$

• Why Law of Iterated Logarithm (LIL)?

Proof uses an LIL for a sum of scaled martingale differences

 $\mathcal{A}_{1}.$ W is an irreducible aperiodic row stochastic matrix

 \exists a unique row vector $\pi \in \mathbb{R}^m$ such that $\pi W = \pi$

Thm. 1 in [Mathkar and Borkar, 2016]: A DSA algorithm converges to an invariant set of the *m*-fold product of the ODE

$$\dot{y}(t) = \underbrace{\pi}_{1 \times m} \underbrace{h(\mathbf{1}^{\top} y(t))}_{m \times d}$$

Any such invariant set is a subset of $S := {\mathbf{1}^\top y : y \in \mathbb{R}^d} \subset \mathbb{R}^{m \times d}$

Let $x_* = \mathbf{1}^\top y_*$, where y_* is an asymptotically stable equilibrium of the above ODE (need not be the only attractor)

Assumptions on h

 \mathcal{A}_2 . There exists a neighbourhood \mathcal{U} of x_* such that, for $x \in \mathcal{U}$,

$$h(x) = -\mathbf{1}^{\top} \pi (x - x_*) A + \mathbf{1}^{\top} \pi f_1(x) + (\mathbb{I} - \mathbf{1}^{\top} \pi) (B + f_2(x)),$$

where

$$A \in \mathbb{R}^{d \times d}$$
 is positive definite, i.e., $yAy^{\top} > 0$ for all $y \neq 0$,

$$B \in \mathbb{R}^{m \times d}$$
 is some constant matrix,

 $f_2: \mathcal{U} \to \mathbb{R}^{m \times d}$ is some arbitrary continuous function, while

 $f_1: \mathcal{U} \to \mathbb{R}^{m \times d}$ is another continuous function such that

$$\|\mathbf{1}^{\top} \pi f_1(x)\| = \mathcal{O}(\|\mathbf{1}^{\top} \pi (x - x_*)\|^a), \qquad \text{as } x \to x_*, \qquad (1)$$

under some norm $\|\cdot\|$ and for some a > 1

 \mathcal{A}_{3} . (α_n) is either of Type 1 or Type γ .

Type 1: $\alpha(n) = \alpha_0/n$ for a suitably large α_0

Type γ : $Cn^{-\gamma}$ and $n^{-\gamma}(\log n)^{\eta}$ for $\gamma \in (0, 1)$

 $\gamma > 2/b$, where b is the constant that is defined on the next slide

Assumptions on Noise

$$\mathcal{A}_4$$
. Let $\mathcal{F}_n = \sigma(x_0, M_1, \dots, M_n)$ and $\mathcal{E}(x_*) = \{x_n \to x_*\}$
 $\mathbb{E}(M_{n+1}|\mathcal{F}_n) = 0$ a.s.

$$\exists C \ge 0 \text{ s.t. } \|QM_{n+1}\| \le C \left(1 + \|Q(x_n - x_*)\|\right) \text{ a.s. on } \mathcal{E}(x_*),$$

where $Q := \mathbb{I} - \mathbf{1}^\top \pi$

 \exists a non-random positive semi-definite matrix M such that

$$\lim_{n\to\infty} \mathbb{E}(M_{n+1}^{\top}\pi^{\top}\pi M_{n+1} | \mathcal{F}_n) = M \quad \text{ a.s. on } \mathcal{E}(x_*)$$

 $\exists \ b>2 \ \text{such that} \ \sup_{n\geq 0} \mathbb{E}(\|\pi M_{n+1}\|^b | \mathcal{F}_n) < \infty \ \text{ a.s. on } \ \mathcal{E}(x_*).$

- Useful for policy evaluation in MARL
- Our result applies since all assumptions hold in this case

- Existing results on convergence rates mainly look at expectation bounds or the CLT. However, these
 - either require the gossip matrix to be doubly stochastic
 - or require stepsizes to be square-summable
 - do not say about the decay rates along different sample paths

- Scaling matrix (i.e., A) in each h_i needs to be the same
- Dynamic communication protocols, i.e., W changes with time
- Two-timescale distributed SA algorithms
- Distributed Q-learning

