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Introduction

VAE, BiGAN,
The problem: flow-based,
Whether or when can we model a joint distribution p(x, z) diffusion-based
only using two conditional models p(x|z) and that form a cycle? 1 (2)

* Motivation from deep generative models: Pe (x|2)

Model both p(x|z) for generation, and for representation.
Define their common joint by a prior p(z): p(x, z) == p(z2)p(x|z).
* Problems of Gaussian prior:

« Manifold mismatch: p(x) has a simply connected support as p(z)
= restricted expressiveness.

* Posterior collapse: is squeezed to the origin s, true data distr.  BIGAN data distr.
= degraded representativeness. R 8
« Using an informative prior: BIGAN repr.
Domain knowledge on the prior is even more scarce than on the conditional models.
(e.g., shift/rotation invariance of for image representation (CNN/SphereNet))

* Learning a prior model: additional modeling and training cost.



Introduction

The problem:
Whether or when can we model a joint distribution p(x, z)
only using two conditional models p(x|z) and that form a cycle?

e Key sub-problems:

« Compatibility (existence): When the two conditionals can be induced from a common joint.
» Determinacy (uniqueness): When the two compatible conditionals uniquely determine a joint.

true data distr. CyGen data distr.

* |n this work,
* Theory: compatibility criteria (equivalent conditions)
and sufficient conditions for determinacy.
* Operable and self-contained.
* Unify continuous and discrete cases.
* CyGen: Cyclic-conditional Generative model. ot

* Methods for enforcing compatibility and determinacy, {"’%,.,
fitting data, and data generation. CyGen repr.




Related Work: Modeling

* Cyclic conditional models

» Dependency networks [Heckerman’00]:
No latent variable (so compatibility is not a problem). Gibbs sampling for the joint.

» Denoising auto-encoders (DAES) [vincent'08]: min [+, [log n(x|2)].
 Variants: Uncertainty AE [Grover’19], Walkback [Bengio’13], GibbsNet [Lamb’17].
* The loss is not suitable for optimizing (mode-collapse, weakens determinacy).
* Inefficient generation and unstable training by Gibbs sampling.
* Dual learning [He’16; Xia’17a,b; Lin’19], Disco[Kim’17]/Cycle[zhu’17]/Dual[Yi’17]-GAN:
* Not for generative modeling (in fact, they lack determinacy).
* No latent variable, unpaired data.



Related Work: Theory

« Compatibility
* The classical condition [Arnold’89,01,12] is not necessary.
* The equivalent condition [Berti’14] is still existential.
* Results from DAE [Bengio’13,14; Lamb’17; Grover’19]: not self-contained (p* (x) is required).
* Cycle-consistency loss [Kim’17; zhu’17; Yi’17; Lin’19]: only for Dirac (deterministic) conditionals.

« Determinacy
* Determining p(x) through score matching (SM):

DAE < denoising SM (Gaussian RBM) [Vincent’11].
DAE < SM (Gaussian decoder noise and infinitesimal Gaussian corruption) [Alain'14].

* Determining p(x, z) through Gibbs chain:

* The chain is ergodic thus has a unique stationary distr. w(x, z) under a global [Bengio’13;
Lamb’17; Grover’19] or local [Bengio’13] shared support condition.

* When incompatible, m(z|x) # or m(x|z) # p(x|z) [Heckerman’00, Bengio’13].
* No explicit expression. Slow convergence for generation. Unstable training (Walkback, GibbsNet).
* The classical description [Arnold’12]: restricted to product support; Dirac case not covered.



Theory

Setup
* Measure spaces for random variables x and z: (X,.Z, &) and (Z, Z, {).
* Product measure space (X X Z, 2Q %.¢§ ® ).
* For W €2 Q% define
its sliceatz: W, = {x | (x,z) € W},
its projection onto Z: W% = {z | 3x s.t. (x,z) € W}.
* For a joint distribution m, define
its marginal onto Z: %(2) = n(X x Z),

dm(Xx-) . 7. -
T2 ) (z) (this is only m*-a.s. unique).

e Define ”='5”, “c$” as the extensions of “=",“C"” up to a set of {-measure-zero.

its conditional T(X'|z) =



Theory

Absolutely continuous case
* Forany z and x, u(: |z) and are either abs. cont. (w.r.t £ and {) or zero.
* Represented by density functions p(x|z) and
* Incl.: “smooth” distr. on Euclidean spaces / manifolds, all distr. on finite/discrete spaces.
* Incl.: VAEs, diffusion-based models.



Theory

Absolutely continuous case
* Compatibility

p(x|z) When cgmpatible p(x,2)/p(2)

p(x,z)/p(x)
* The classical condition [Arnold’89,01] requires the factorization over X X Z.:
It is not necessary! Because p(x|z) is uncontrolled outside the support of m”.

For identifying a proper region for the factorization,

* Definition: A set S is said to be a ¢ @ (-complete component
of We2RZ,ifS*  n W =5®¢ § where
S* = SX X ZUXxS§%is the stretch of S.

* Complete under stretching and intersecting with W: so that .
integral on S, = integral on W,, for a.e. z € SZ. sX )

* Conditionals are a.s. determined on ¥ if S is the support /
of the joint. |

L . 1 .
e First intuition: the ratio = p(x) o~ factorizes.

XA

— > 7



Th r often just a few candidates, If z is in the support of the joint, then p(x|z) determines
€O y so it is operable. the distribution on X X {z}, so should respect it
(> 0 where p(x|z) is) to avoid support conflict.

Absolutely coptinuous case

» Theorem fcompatibility critericn, abs. cont.). p(x|z) and are compatible, if and only if
there exists a set § (called complete support) such that: makes conditionals normalized,
t:]’ make | (i) S is a & ® {-complete component—efboth since S, =¢ (Wp,q)z =P,
:c/vee”tatlo Wy q = UZ:?ch P, X {z} and Wyp = U,. g(?x{x} X 0.,
defined | where P, := {x | p(x|z) > 0}, P, :=={z | p(x|z) > 0},
for suf- and = {x | > O}' = {Z | > 0}; X’A NN \
ficiency; <(ii) sX s Wy, st cé wk - p(x|2)
not gua- (... _ >
ranteed (i) (fx%)() (8)>0; P I I ¥z,
by (i) iv) 2 factorizes as a(x)b(z), { @ {-a.e.on§; ¢ J &
the first 1/(v) a(x) is &-integrable on S*. Wp.q:
intuition For sufficiency, (W) = Fwas la(x)|(§®R2)(dxdz) | : Wypr &
Y | fx laGol@n 0 el .y
VW € 2 Q% is a compatible joint. z1 € Wpy Z S Wy
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Theory

Absolutely continuous case

* Theorem (determinacy, abs. cont.). Let S be a complete support of compatible conditionals

p(x|z) and AfS, =5 SXforC-ae.z€ SorS, =5 SZfor é-a.e. x € SX, then their
compatible joint supported on § is unique.

* Roughly means § is “rectangular”: irreducibility of the Gibbs chain.
* The uniqgueness is only possible on each complete support §.

* Corollary. If compatible conditionals p(x|z) and have a.e.-full supports, then their
compatible joint on X X Z is unique.

* Determinacy in the abs. cont. case is often sufficient.



Theory

Dirac case
*u(X|z) = 6 (X) =1[f(2) € X](f:Z - Xis measurable; e.g., when continuous).
* Incl.: Euclidean/manifold case (no density function), and finite/discrete case (also abs. cont.).
* Incl.: GANSs, flow-based models.

Compatibility: X1
* Theorem (compatibility criterion, Dirac). Suppose .2 contains x = f(z)
all the single-point sets. Then conditional is compatible
with (X |2) = 6, (20), if and only if X /
there exists x5 € X s.t. v(f "1 ({xoDIxo) = 1.
is not required to concentrate on the curve for any x:
for one such x,, 5(x0’f(x0)) is already a compatible joint. > 7.
* When := &, () and compatibility is desired over a set X':

* Min the cycle-consistency 10ss [E, ) (x,f( (x))) is sufficient (p(x) supported on X; £ a metric).

* Itis also necessary if f is invertible: flow-based models are naturally compatible.



Theory

Dirac case
Determinacy:
* On each x in the theorem, there is a compatible joint O, 7(x,))-

* But if such an xg is not unique, the joint is not unique on X X Z.

* Determinacy in the Dirac case is usually insufficient:
Compatible Dirac conditionals only determine a curve on X X Z but not a distribution on it.

* If f(z) = xy is constant, then the joint is fully determined by



CyGen

* General design:

CyGen: Cyclic Generative model

Eligibility as a generative model Usage as a generative model

Compatibility Determinacy Fitting Data Data Generation

|

e Dirac conditionals (e.g., in GANs, flow-based models) are not suitable (insufficient determinacy).
* Use abs. cont. conditionals (like VAEs), modeled by parameterized densities py (x|z), g, (z|x)

with full supports.

Chang Liu (MSRA) 13



CyGen

* Enforcing compatibility:

2

C0,8) = Eppun[|V:V770,6 (x, 2)|, where g, (x, 2) = log (g (x2) /a1, (2])),
and p(x, z) is an abs. cont. reference distr. supported on X X Z, e.g., p* (x)
*C(0,p) =0=py(x|z)/ factorizes a.e.

* Generalizes the cycle-consistency loss to probabilistic conditionals.
- Efficient implementation by Hutchinson’s ['89] trace estimator: tr(A) = E,,)[n ' An]

o 2

C C(0,9) =EpuenEpap ‘ Vs (nTvxTB,qb (x, Z)) Hz p(n) is any distr. s.t.

#{derivative computation}: 0(dyd;) C 0(dy + dy). Eln] = 0, Var[n] = 1.
 Gradient estimation for flows :z = Ty (e|x), e ~ p(e) with intractable inverse:

Vv, log (Ty(e]x)|x) = (VeT(;(e|x)) ' Vohy (e, x),

V4 log (T¢(e|x)|x) = Vyhg(e, x) — (VxT(},r(e|x)) V,log (T¢(e|x)|x),
where hy (e, x) = log (T¢(e|x)|x).



CyGen

* Enforcing compatibility:

2
C(O,p) = IEp(x,Z)”VxV}rg,qb (x, Z)| ” where 1 4 (x, z) := log (pg (x|z)/ )
* Implication on Gaussian VAE pg(x|z) = N (x|fy (2), 051), = V(2| o 1):
2
C(H; ¢) = [Ep(x,z) Jiczl(vsz(Z))T - ivx

=0 fo(2), are affine.
* Meets conclusions in causality [zhang’09; Peters’14].

F
* Root cause of recent observation (latent space is quite linear [Shao’18]) and analysis (latent space
coordinates the data manifold [Dai’19], encoder learns a rescaled isometric embedding [Nakagawa’21]).

* For a nonlinear repr., use a more flexible model (e.g., Sylvester flow [VDBerg’18]).

 Relation to AE regularizations:
* Contractive AE [Rifai'11]: E,«(|IV ||%.
* Denoising AE [Rifai'11; Alain'14]: Ep,«» [IV(f © )T||% (Gauss. enc. noise, infinitesimal Gauss. corruption).
* “Tied weights” in AEs [Vincent’08; Rifai’11; Alain'14]: compatibility for sigmoid conditionals.




CyG en ‘logsumexp’ trick for {Z(i)}l_v -
=

numerical stability

* Fitting data: ~ log YL, eXp(— log g (x|z(i))) —logN
 Maximum Likelihood Estimator (MLE) is available: - : ~
(maXG,cp) Ep*(x) [log Po,¢ (x)] = Ep*(x) [_ log E [1/pe (xlzl)]] :
* The DAE objective IEp*(x) [logpg (x|z")] = Ep+x) [logp9,¢ (x)]:

improper for MLE; makes mode-collapsed and hurts determinacy.
* CyGen final training loss: (ming ) Ep+x)|—logpe,e ()| + 2 C(6, ).

* Data generation: sample from the model-determined data distribution pg 4 (x).
* Dynamics-based MCMCs:
* Converge faster than Gibbs sampling.

* Only need unnormalized pg 4 (x), which is available: pg 4 (x) Po(x|2) ,Vz.
* E.g., Stochastic Gradient Langevin dynamics (SGLD):
©)1,©®
x(E+D) = (6 4 eV v log po(x 12 ") + /26 n®, where z(&) ~ n® ~ N(0,D).




Experiment Results: Synthetic PreTrain as a VAE then

mainly finetune

« Generation and Representation: manifold mismatch and posterior collapse solved. /

DAE VAE BiIGAN CyGen CyGen(PT)
data (nllh = 267.6) (nllh =5.1) (nllh = 66.1) (nllh =-0.41) (nllh =-0.41)

class-wise
aggregated
posterior
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Experiment Results: Synthetic

* Incorporating knowledge into conditional models
The VAE-pretrained pg (x|z) model encodes the knowledge:

“the prior is centered and centrosymmetric”.

Prior of VAE Prior of CyGen  Prior of CyGen(PT)

Chang Liu (MSRA)
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Experiment Results: Synthetic

« Comparison of data generation methods: SGLD is better and more robust to incompatibility.
(iter 1100) (iter 1200) (iter 1300) (iter 1400) (iter 30000)

CyGen(PT)  (compt7.0e3) (compt5.4e3) (compt7.7e3) (comptb6.2e3) (compt4.6e3)

After pretraining
(iter 1000) Z-space
(compt 1.6e4) SGLD

Gibbs
sampling



Experiment Results: Synthetic

« Necessity of compatibility
(iter 1100) (iter 1200) (iter 1300) (iter 1400) (iter 30000)
CyGen(PT)  (compt7.0e3) (compt5.4e3) (compt7.7e3) (comptb6.2e3) (compt4.6e3)

After pretraining o
(iter 1000) e
(compt 1.6e4) e o

(compt 1.1e5) (compt 1.6e5) (compt 2.6e5) (compt 8.6e5) (compt 1.2e8)

CyGen(PT) w/o 4
compt. loss




Experiment Results: Synthetic

« DAE mode collapse
(iter 1100) (iter 1200) (iter 1300) (iter 1400) (iter 30000)

CyGen(PT)  (compt7.0e3) (compt5.4e3) (compt7.7e3) (comptb6.2e3) (compt4.6e3)

After pretraining o
(iter 1000) 4 o
(compt 1.6e4) - o
(iter 9200)

(compt 6.3e3) (compt 2.2e3) (compt1.9e3) (compt9.7e2) (compt 2.2e2)




Experiment Results: Synthetic PreTrain as a VAE then

mainly finetune

« Generation and Representation: “8gaussians” dataset. /
data DAE VAE BiGAN CyGen CyGen(PT)
class-wise - , L

aggregated 3 ;g
posterior L 5 % R
i ;

.
.
o P,
‘a
L}
A

4
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MNIST & SVHN

Experiment Results

* Data generatlon DAE
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Experiment Results: MNIST & SVHN

* Downstream classification on the latent space:

A hint on posterior collapse.

T: Results for BiGAN and GibbsNet are from [Lamb’17] which use a different, deterministic
architecture (not suitable for CyGen due to insufficient determinacy).
They make random guess using the same, probabilistic architecture.

DAE VAE BiGANT GibbsNet'|CyGencpT)

MNIST 98.0+0.1 94.5403 91.0 97.17 98.3+0.1
SVHN 74.5+41.0 30.8402 66.7 79.6 75.840.5




Thanks!

https://arxiv.org/abs/2106.15962

Chang Liu (MSRA)
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