VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization

Mucong Ding*, Kezhi Kong*, Jingling Li, Chen Zhu, John P Dickerson, Furong Huang, Tom Goldstein

University of Maryland, College Park

COMPUTER SCIENCE UNIVERSITY OF MARYLAND

Scalability Problem of GNNs

Most Graph Neural Networks

Defined as

Graph Convolutions

Message passing between direct neighbors (or beyond)

"Neighbor Explosion" Problem:

A L-layer GNN (at least) aggregates information from all L-hop neighbors.

Universal Framework that Preserves All Messages

Most scalable methods universal to a variety of GNNs are sampling based.

Drawback: consider only a small subset of messages passed to the nodes in a mini-batch.

- 1) Performance not guaranteed across various tasks and datasets [Hu2020].
- 2) Require **all neighbors** in the **inference phase** to be non-stochastic.
- 3) Cannot be applied to GNNs that utilize many-hop or global context each layer.

Question: Can we develop a universal framework to scale-up GNNs while preserving all messages in a mini-batch? Yes, by applying vector quantization to GNNs!

Common Framework of GNNs

Cover most of GNNs [Balcilar2020]

We consider all GNNs that can be written as:

Dimensionality Reduction in GNNs

Idea: applying dimensionality reduction to convolution matrix C and node feature matrix X, so that graph convolution can be approximated using the compressed "sketches" of C and X.

To compute a mini-batch $\langle i_b \rangle = i_1, ..., i_b$ of forward-passed features $X_B^{(l+1)} = X_{\langle i_b \rangle,:}^{(l+1)}$ We need a slice of C, i.e., $C_B^{(l,s)} = C_{\langle i_b \rangle,:}^{(l,s)}$ and the whole $X^{(l)}$, each of size O(n).

If we have a projection matrix $R \in \mathbb{R}^{n \times k}$, where $k \ll n$, such that,

Sketched convolution matrix $C_B^{(l,s)} R R^T X^{(l)} \approx C_B^{(l,s)} X^{(l)}$

Then we only need sketches $C_B^{(l,s)}R$ and $R^T X^{(l)}$, each of size O(k), now fits in memory.

Desired Properties of Dimensionality Reduction

The existence of projection *R* is guaranteed by the sparse JL-lemma [Kane2014]:

Theorem 1: For any convolution matrix C and column vector $X_{:, a}$ of node feature matrix, there **exists** a projection matrix $R \in \mathbb{R}^{n \times k}$ with only $O(\varepsilon)$ -fraction of non-zeros, such that, $\Pr(\|CR R^T X_{:, a} - CX_{:, a}\| < \varepsilon \|CX_{:, a}\|) > 1 - \delta$ with $k = O(\log(n)/\varepsilon^2)$ and $\delta = O(1/n)$.

Two properties are desired:

- Sparse projection matrix *R* is favorable:
 - 1) Given a sparse *C*, the sketched convolution matrix *CR* is still sparse.
 - 2) Updating sketched node features $R^T X$ requires fewer computations.
- For learnable convolutions $C_{i,j} \propto h(X_i, X_j)$, we can approximate *CR* as functions of $R^T X$ with O(k) complexities. It is possible if we can estimate any X_i directly from $R^T X$.

Vector Quantization

Vector Quantization (VQ) can be formulated as: given $X \in \mathbb{R}^{n \times f}$, minimize $||X - R\tilde{X}||_F$ s.t. $R \in \mathbb{R}^{n \times k}$; $R_{i,:} \in \{e_k^1, ..., e_k^1\}$ for any $i; \tilde{X} \in \mathbb{R}^{k \times f}$, which is solved by *k*-means.

- The rows of \tilde{X} are the k codewords, and $\tilde{X} = \text{diag}^{-1}(R^T \mathbf{1}_n)R^T X$.
- *R* encodes codeword assignment. $R_{i,v} = 1$ if and only if the *i*-th node is assigned to the *v*-th cluster in *k*-means.

In VQ, each of the n node feature vectors, X_i , is directly approximated by a specific codeword vector \tilde{X}_j . The two desired properties naturally hold.

M. Ding*, K. Kong*, J. Li, C. Zhu, J. Dickerson, F. Huang, T. Goldstein. University of Maryland.

Vector Quantized GNNs

Using VQ, we learn and update a small number of quantized reference vectors (codewords) of global node representations in each layer of GNN. We can approximate all the messages passed to the nodes in a mini-batch.

In VQ-GNN, forward-pass (message passing) in a layer of GNN is approximated by:

Forward and Backward Message Passing

Back-propagation in a layer of GNN can also be realized by message passing. In VQ-GNN, we approximate back-propagation (message passing) similarly.

Messages related to a mini-batch are divided into three categories.

We treat forward and backward message passing symmetrically.

VQ Update Rule and Error Bounds

We use the VQ update rule proposed in VQ-VAE [Oord2017]: which updates the codewords as exponential moving averages of the mini-batch inputs.

VQ-GNN is guaranteed to approximate the full-graph training:

Theorem 2 & Corollary 3: If the relative error of VQ, ϵ , is upper bounded, under some mild continuity and Lipschitz conditions (only when the convolution is learnable), we prove the errors of approximated forward-pass and back-propagation is also upper bounded.

See our paper for detailed update rules, pseudo code, error-bounds, and discussions.

M. Ding*, K. Kong*, J. Li, C. Zhu, J. Dickerson, F. Huang, T. Goldstein. University of Maryland.

Theoretical Complexities

Our VQ-GNN enjoys competitive training memory and time complexities compared with Cluster-GCN [Chiang2019] and GraphSAINT-RW [Zeng2019], and much faster inference time.

The complexities of L-layer GCN with f-dimensional (hidden) features in each layer, applied to a graph with n nodes and m edges (average degree d = m/n) are:

Scalable Method	Memory Usage	Pre-computation Time	Training Time	Inference Time
NS-SAGE	$O(br^Lf + Lf^2)$	_	$O(nr^Lf + nr^{L-1}f^2)$	
Cluster-GCN	$O(Lbf + Lf^2)$	O(m)	$O(Lmf + Lnf^2)$	$O(nd^Lf + nd^{L-1}f^2)$
GraphSAINT-RW	$O(L^2 b f + L f^2)$	—	$O(L^2 nf + L^2 nf^2)$	
VQ-GNN (Ours)	$O(Lbf + Lf^2 + Lkf)$		$O(Lbdf + Lnf^2 + Lnkf)$	$O(Lbdf + Lnf^2)$

Although we have O(Lkf) memory and O(Lnkf) time overheads to store and update the codewords, they are practically small (compared to other terms), because very small $k \leq 256$ is sufficient in most cases.

Experiments: Efficiency of VQ-GNNs

VQ-GNN can converge faster than the sampling-based methods under some setups. Experiments verify the memory overhead of VQ is relatively small.

Convergence curves (left) and peak memory usages (right) of SAGE-Mean on ogbn-arxiv.

GNN Model	SAGE-Mean		
NS-SAGE	1140.3 MB		
Cluster-GCN	$514.1~{ m MB}$		
GraphSAINT-RW	$519.2~\mathrm{MB}$		
VQ-GNN (Ours)	801.8 MB		

The inference time of VQ-GNN is 0.40s, while the sampling-based methods require 1.61s, tested with SAGE-Mean on *ogbn-arxiv*.

Experiments: Performance of VQ-GNNs

The performance of VQ-GNN consistently matches the "full-graph" training performance (oracle) across tasks and datasets. But sampling-based methods may fail.

Task Benchmark	Node Classification ogbn-arxiv (Acc.±std.)			Link Prediction ogbl-collab (Hits@50±std.)		
GNN Model	GCN	SAGE-Mean	GAT	GCN	SAGE-Mean	GAT
"Full-Graph"	$.7029 \pm .0036$	$.6982\pm.0038$	$.7097\pm.0035$	$.4475 \pm .0107$	$.4810\pm.0081$	$.4048\pm.0125$
NS-SAGE ¹ Cluster-GCN GraphSAINT-RW		$.7094 \pm .0060$ $.6976 \pm .0049$ $.6987 \pm .0039$	$.7123 \pm .0044$ $.6960 \pm .0062$ $.7117 \pm .0032$	$.4068 \pm .0096$ $.4368 \pm .0169$	$.4776 \pm .0041$ $.3486 \pm .0216$ $.3359 \pm .0128$	$\begin{array}{c} .3499 \pm .0142 \\ .3905 \pm .0152 \\ .3489 \pm .0114 \end{array}$
VQ-GNN (Ours)	$.7055 \pm .0033$	$.7028\pm.0047$	$.7043 \pm .0034$	$.4316\pm.0134$	$.4673 \pm .0164$	$.4102\pm.0099$

¹ NS-SAGE is not compatible with GCN.

See our paper for performance results on more datasets, under inductive learning setups, and more ablation studies.

Thank you!

COMPUTER SCIENCE UNIVERSITY OF MARYLAND

Mucong Ding*, Kezhi Kong*, Jingling Li, Chen Zhu, John P Dickerson, Furong Huang, Tom Goldstein. University of Maryland.