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Scalability Problem of GNNs

“Neighbor Explosion” Problem:

A 𝐿𝐿-layer GNN (at least) aggregates information from all 𝐿𝐿-hop neighbors.

Most Graph Neural Networks                                 Graph ConvolutionsDefined as

Message passing between 
direct neighbors (or beyond)

1-hop

2-hop

center

Size of neighborhood grows exponentially with 𝐿𝐿.

𝑂𝑂 𝑏𝑏𝑑𝑑𝐿𝐿 node inputs required on the GPU at once.

Average node degreeMini-batch size

Memory bottleneck when Scaling-up GNNs
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Universal Framework that Preserves All Messages 

Question: Can we develop a universal framework to scale-up GNNs while 
preserving all messages in a mini-batch?

Yes, by applying vector quantization to GNNs!

Most scalable methods universal to a variety of GNNs are sampling based.

Drawback: consider only a small subset of messages passed to the nodes in a mini-batch.
1) Performance not guaranteed across various tasks and datasets [Hu2020].

2) Require all neighbors in the inference phase to be non-stochastic.

3) Cannot be applied to GNNs that utilize many-hop or global context each layer.



M. Ding*, K. Kong*, J. Li, C. Zhu, J. Dickerson, F. Huang, T. Goldstein. University of Maryland.

Common Framework of GNNs

We consider all GNNs that can be written as:

𝑋𝑋(𝑙𝑙+1) = 𝜎𝜎 �
𝑠𝑠

𝐶𝐶(𝑙𝑙, 𝑠𝑠) 𝑋𝑋(𝑙𝑙) 𝑊𝑊(𝑙𝑙, 𝑠𝑠)

Activation function
Message passing

(graph convolution 𝐶𝐶(𝑠𝑠) ∈ ℝ𝑛𝑛×𝑛𝑛) Feature transformation

Cover most of GNNs [Balcilar2020]

Multiple convolutions Node features (𝑋𝑋(𝑙𝑙) ∈ ℝ𝑛𝑛×𝑓𝑓𝑙𝑙)

Convolution matrix 𝐶𝐶(𝑠𝑠) can be either:       fixed or       learnable (𝐶𝐶𝑖𝑖, 𝑗𝑗 ∝ h(𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗))

GCN [Kipf2016], SAGE-Mean [Hamilton2017], … GAT [Veličković2018], GIN [Xu2019], ChebNet [Defferrard2016], 
Graph Transformers, …
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Dimensionality Reduction in GNNs
Idea: applying dimensionality reduction to convolution matrix 𝐶𝐶 and node 
feature matrix 𝑋𝑋, so that graph convolution can be approximated using the 
compressed “sketches” of 𝐶𝐶 and 𝑋𝑋.

If we have a projection matrix 𝑅𝑅 ∈ ℝ𝑛𝑛×𝑘𝑘, where 𝑘𝑘 ≪ 𝑛𝑛, such that,

𝐶𝐶𝐵𝐵
(𝑙𝑙, 𝑠𝑠)𝑅𝑅 𝑅𝑅𝑇𝑇𝑋𝑋(𝑙𝑙) ≈ 𝐶𝐶𝐵𝐵

(𝑙𝑙, 𝑠𝑠)𝑋𝑋(𝑙𝑙)

To compute a mini-batch 𝑖𝑖𝑏𝑏 = 𝑖𝑖1, … , 𝑖𝑖𝑏𝑏 of forward-passed features 𝑋𝑋𝐵𝐵
(𝑙𝑙+1) = 𝑋𝑋 𝑖𝑖𝑏𝑏 , ∶

(𝑙𝑙+1)

We need a slice of 𝐶𝐶, i.e., 𝐶𝐶𝐵𝐵
(𝑙𝑙, 𝑠𝑠) = 𝐶𝐶 𝑖𝑖𝑏𝑏 , ∶

(𝑙𝑙, 𝑠𝑠) and the whole 𝑋𝑋(𝑙𝑙), each of size 𝑂𝑂(𝑛𝑛).

Then we only need sketches 𝐶𝐶𝐵𝐵
(𝑙𝑙, 𝑠𝑠)𝑅𝑅 and 𝑅𝑅𝑇𝑇𝑋𝑋(𝑙𝑙), each of size 𝑂𝑂(𝑘𝑘), now fits in memory.

Sketched convolution matrix Sketched node features
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Desired Properties of Dimensionality Reduction

Theorem 1: For any convolution matrix 𝐶𝐶 and column vector 𝑋𝑋:, 𝑎𝑎 of node feature matrix,
there exists a projection matrix 𝑅𝑅 ∈ ℝ𝑛𝑛×𝑘𝑘 with only 𝑂𝑂 𝜀𝜀 -fraction of non-zeros, such that, 

Pr 𝐶𝐶𝑅𝑅 𝑅𝑅𝑇𝑇𝑋𝑋:, 𝑎𝑎 − 𝐶𝐶𝑋𝑋:, 𝑎𝑎 < 𝜀𝜀 𝐶𝐶𝑋𝑋:, 𝑎𝑎 > 1 − δ
with 𝑘𝑘 = 𝑂𝑂 log 𝑛𝑛 /𝜀𝜀2 and 𝛿𝛿 = 𝑂𝑂 1/𝑛𝑛 .

Two properties are desired:
• Sparse projection matrix 𝑅𝑅 is favorable:

1) Given a sparse 𝐶𝐶, the sketched convolution matrix 𝐶𝐶𝑅𝑅 is still sparse.
2) Updating sketched node features 𝑅𝑅𝑇𝑇𝑋𝑋 requires fewer computations.

• For learnable convolutions 𝐶𝐶𝑖𝑖, 𝑗𝑗 ∝ h(𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗), we can approximate 𝐶𝐶𝑅𝑅 as functions of
𝑅𝑅𝑇𝑇𝑋𝑋 with 𝑂𝑂(𝑘𝑘) complexities. It is possible if we can estimate any 𝑋𝑋𝑖𝑖 directly from 𝑅𝑅𝑇𝑇𝑋𝑋.

The existence of projection 𝑅𝑅 is guaranteed by the sparse JL-lemma [Kane2014]:



Vector Quantization (VQ) can be formulated as: given 𝑋𝑋 ∈ ℝ𝑛𝑛×𝑓𝑓,
minimize  𝑋𝑋 − 𝑅𝑅 �𝑋𝑋 𝐹𝐹 s.t. 𝑅𝑅 ∈ ℝ𝑛𝑛×𝑘𝑘; 𝑅𝑅𝑖𝑖, ∶ ∈ {𝒆𝒆𝑘𝑘1 , … , 𝒆𝒆𝑘𝑘1} for any 𝑖𝑖; �𝑋𝑋 ∈ ℝ𝑘𝑘×𝑓𝑓,

which is solved by k-means. 
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Vector Quantization 

• The rows of �𝑋𝑋 are the 𝑘𝑘 codewords, and �𝑋𝑋 = diag−1(𝑅𝑅𝑇𝑇𝟏𝟏𝑛𝑛)𝑅𝑅𝑇𝑇𝑋𝑋.
• 𝑅𝑅 encodes codeword assignment. 𝑅𝑅𝑖𝑖, 𝑣𝑣 = 1 if and only if the 𝑖𝑖-th node is assigned to

the 𝑣𝑣-th cluster in k-means.

In VQ, each of the 𝑛𝑛 node feature vectors, 𝑋𝑋𝑖𝑖, is directly approximated by a specific 
codeword vector �𝑋𝑋𝑗𝑗. The two desired properties naturally hold.



M. Ding*, K. Kong*, J. Li, C. Zhu, J. Dickerson, F. Huang, T. Goldstein. University of Maryland.

Vector Quantized GNNs
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Using VQ, we learn and update a small number of quantized reference vectors 
(codewords) of global node representations in each layer of GNN.
We can approximate all the messages passed to the nodes in a mini-batch.
In VQ-GNN, forward-pass (message passing) in a layer of GNN is approximated by:
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Forward and Backward Message Passing

Both forward and backward

Used only in forward-pass
Used only in back-propagation

Back-propagation in a layer of GNN can also be realized by message passing.
In VQ-GNN, we approximate back-propagation (message passing) similarly.

Messages related to a mini-batch 
are divided into three categories.

We treat forward and backward message
passing symmetrically.
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VQ Update Rule and Error Bounds

We use the VQ update rule proposed in VQ-VAE [Oord2017]:
which updates the codewords as exponential moving averages of the mini-batch inputs.

Theorem 2 & Corollary 3: If the relative error of VQ, 𝜖𝜖, is upper bounded, under some mild 
continuity and Lipschitz conditions (only when the convolution is learnable), we prove the 
errors of approximated forward-pass and back-propagation is also upper bounded.

See our paper for detailed update rules, pseudo code, error-bounds, and discussions.

VQ-GNN is guaranteed to approximate the full-graph training:



M. Ding*, K. Kong*, J. Li, C. Zhu, J. Dickerson, F. Huang, T. Goldstein. University of Maryland.

Theoretical Complexities
Our VQ-GNN enjoys competitive training memory and time complexities compared with 
Cluster-GCN [Chiang2019] and GraphSAINT-RW [Zeng2019], and much faster inference time.

Although we have 𝑂𝑂(𝐿𝐿𝑘𝑘𝐿𝐿) memory and 𝑂𝑂(𝐿𝐿𝑛𝑛𝑘𝑘𝐿𝐿) time overheads to store and update 
the codewords, they are practically small (compared to other terms), because very small 
𝑘𝑘 ≤ 256 is sufficient in most cases.   

The complexities of 𝐿𝐿-layer GCN with 𝐿𝐿-dimensional (hidden) features in each layer, 
applied to a graph with 𝑛𝑛 nodes and 𝑚𝑚 edges (average degree 𝑑𝑑 = 𝑚𝑚/𝑛𝑛) are: 
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Experiments: Efficiency of VQ-GNNs
VQ-GNN can converge faster than the sampling-based methods under some setups. 
Experiments verify the memory overhead of VQ is relatively small.

The inference time of VQ-GNN is 0.40s, while the sampling-based methods require 1.61s, 
tested with SAGE-Mean on ogbn-arxiv.

Convergence curves (left) and peak memory usages (right) of SAGE-Mean on ogbn-arxiv.



M. Ding*, K. Kong*, J. Li, C. Zhu, J. Dickerson, F. Huang, T. Goldstein. University of Maryland.

Experiments: Performance of VQ-GNNs
The performance of VQ-GNN consistently matches the “full-graph” training performance 
(oracle) across tasks and datasets. But sampling-based methods may fail.

See our paper for performance results on more datasets, under inductive learning setups, 
and more ablation studies.
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Thank you!
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