Towards Efficient and Effective Adversarial Training

Gaurang Sriramanan*

Sravanti Addepalli*

Arya Baburaj

R. Venkatesh Babu

Video Analytics Lab, Department of Computational and Data Sciences Indian Institute of Science, Bangalore

Introduction

Deep Learning Applications

- Autonomous navigation systems
- Surveillance systems
- Medicine and health care
- Reinforcement learning
- Generative modelling
- Style transfer
- Robotics
- Speech Processing
- Natural Language Processing

https://www.theparliamentmagazine.eu/news/article/aut onomous-driving-a-glimpse-into-the-future

AI beats docs in cancer spotting

https://paulbiegler.com/2017/12/21/ai-beats-docs-incancer-spotting/

By Sam Byford | @345triangle | Mar 9, 2016, 2:32am EST

f y R share

https://www.theverge.com/2016/3/9/1118 4362/google-alphago-go-deepmind-result

https://www.icsfoundation.ie/can-make-care-robots-affordable-need/

Adversarial Attacks

Prediction: Hamster Confidence = 99.99%

50-step PGD targeted attack with $\varepsilon = \frac{8}{255}$ scaled by 50x

Prediction: Banjo Confidence = 100%

Motivation for Adversarial Defense Research

Hackers can trick a Tesla into accelerating by 50 miles per hour

A two inch piece of tape fooled the Tesla's cameras and made the car quickly and mistakenly speed up.

https://www.technologyreview.com/2020/02/19/868188/hacke rs-can-trick-a-tesla-into-accelerating-by-50-miles-per-hour/

Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition, M Sharif, S Bhagavatula, L Bauer, MK Reiter, ACM SIGSAC 2016

https://www.vox.com/futu reperfect/2019/4/8/182974 10/ai-tesla-self-drivingcars-adversarialmachine-learning

Defending against Adversarial Attacks

Single-step defenses

- Single-step gradients used for attack generation
- FGSM training ²
- Low computational cost
- Susceptible to Gradient Masking leading to a false sense of security and training instability
- Suboptimal clean accuracy and robustness

¹ Guo et al. Countering adversarial images using input transformations. ICLR, 2018.

² Goodfellow et al. Explaining and harnessing adversarial examples. ICLR, 2015.

³ Madry et al. Towards Deep Learning Models Resistant to Adversarial Attacks. ICLR, 2018.

⁴ Zhang et al. Theoretically principled trade-off between robustness and accuracy. ICML, 2019.

NuAT: Nuclear Norm Adversarial Training

0 -											- 400	0 -									68	- 400
											- 350											- 350
∾ -												~ - 10			48							
- m											- 250	m -					375					- 250
4 -												4 -					381			38		
<u>ہ</u>											- 200	- n										- 200
9 -											- 150	9 -	26					369				- 150
-											- 100	► -							396		20	- 100
∞ -											- 50	- 00										- 50
ი -												o -										
Nuclear Norm Attack									- 0		1	Fro	ben	ius I	ۂ Norm	າ Átt	ack		9	- 0		

Preliminaries: Nuclear Norm

$$\|A\|_* = \sum_{i=1}^{\min\{m,n\}} \sigma_i(A) = \operatorname{trace}ig(\sqrt{A^*A}ig)$$

- Forms a uniform upper bound of the Frobenius Norm
- Let $A = U\Lambda V^T$ be the Singular Value Decomposition of A

$$||A||_*^2 = \left(\sum_{i=1}^{\rho} \sigma_i\right)^2 = \sum_{i=1}^{\rho} \sigma_i^2 + \sum_{i\neq j} \sigma_i \cdot \sigma_j \ge \sum_{i=1}^{\rho} \sigma_i^2$$

$$\sum_{i=1}^{\rho} \sigma_i^2 = ||\Lambda||_F^2 = ||U\Lambda||_F^2 = ||U\Lambda V^T||_F^2 = ||A||_F^2$$

Nuclear Norm Regularization

$$L = \ell_{CE}(f_{\theta}(X), Y) + \lambda \cdot ||f_{\theta}(X) - f_{\theta}(X)||_{*}$$

Nuclear Norm Regularization

Generation of Nuclear-Norm based attack

For a training minibatch $B = \{(x_i, y_i)\}_{i=1}^M$, $X = \begin{bmatrix} \dots & x_1 & \dots \\ \dots & \vdots & \dots \\ \dots & x_M & \dots \end{bmatrix}, \quad Y = \begin{bmatrix} y_1 \\ \vdots \\ y_M \end{bmatrix} \quad \Delta = \begin{bmatrix} \dots & \delta_1 & \dots \\ \dots & \vdots & \dots \\ \delta_M & \dots \end{bmatrix}, \quad \delta_i \sim Bern^d(-\alpha, \alpha)$ $\overline{L} = \ell_{CE} \left(f_{\theta}(X + \Delta), Y \right) + \lambda \cdot || f_{\theta}(X + \Delta) - f_{\theta}(X) ||_{*}$ $\Delta = \Delta + \varepsilon \cdot \operatorname{sign} \left(\nabla_{\Delta} \widetilde{L} \right)$ $\Delta = Clamp \ (\Delta, -\varepsilon, \varepsilon), \quad \widetilde{X} = Clamp \ (X + \Delta, 0, 1)$

Diversity of Nuclear-Norm Attack

Confusion Matrices for predictions against adversarial attacks generated by maximizing the Nuclear norm and Frobenius norm of a matrix respectively. These are obtained for a normally trained model with ResNet-18 architecture on CIFAR-10 dataset.

NuAT: Nuclear-Norm Adversarial Training

Repeat for I iterations

NuAT-WA

Single-step Nuclear Norm based attack $L = \ell_{CE} \left(f_{\theta}(X + \Delta), Y \right) + \frac{\lambda \cdot ||f_{\theta}(X + \Delta) - f_{\theta}(X)||_{*}}{\lambda \cdot ||f_{\theta}(X + \Delta) - f_{\theta}(X)||_{*}}$ $\Delta = \Delta + \varepsilon \cdot \operatorname{sign}\left(\nabla_{\Delta}\widetilde{L}\right)$ $\Delta = Clamp \ (\Delta, -\varepsilon, \varepsilon), \quad \widetilde{X} = Clamp \ (X + \Delta, 0, 1)$ **Adversarial Training** $L = \ell_{CE}(f_{\theta}(X), Y) + \frac{\lambda \cdot ||f_{\theta}(\widetilde{X}) - f_{\theta}(X)||_{*}}{\lambda \cdot ||f_{\theta}(\widetilde{X}) - f_{\theta}(X)||_{*}}$ Parameter update $\theta = \theta - \frac{1}{M} \cdot \eta \cdot \nabla_{\theta} L, \ \omega = (1 - \tau) * \theta + \tau * \omega$

Repeat for I iterations

NuAT2: 2-step Adversarial Training

First attack step

$$\widetilde{L} = \ell_{CE} \left(f_{\theta}(X + \Delta), Y \right) + \lambda \cdot ||f_{\theta}(X + \Delta) - f_{\theta}(X)||_{*}$$

$$\Delta = \Delta + \varepsilon \cdot \text{sign} \left(\nabla_{\Delta} \widetilde{L} \right)$$

$$\Delta = Clamp \left(\Delta, -\varepsilon, \varepsilon \right), \quad \widetilde{X} = Clamp \left(X + \Delta, 0, 1 \right)$$

Second attack step

$$\Delta = \Delta + \varepsilon \cdot \operatorname{sign}(\nabla_{\Delta} \ell_{CE}(f_{\theta}(X + \Delta), Y)))$$

$$\Delta = Clamp(\Delta, -\varepsilon, \varepsilon), \quad \widetilde{X} = Clamp(X + \Delta, 0, 1)$$

NuAT2-WA

First attack step from EMA (Exponential moving average) model

$$\begin{split} \widetilde{L} &= \ell_{CE}(f_{\omega}(X + \Delta), Y) + \lambda \cdot ||f_{\omega}(X + \Delta) - f_{\omega}(X)||_{*} \\ \Delta &= \Delta + \varepsilon \cdot \operatorname{sign}\left(\nabla_{\Delta} \widetilde{L}\right) \\ \Delta &= Clamp\left(\Delta, -\varepsilon, \varepsilon\right) \end{split}$$

Second attack step from the model being trained

$$\Delta = \Delta + \varepsilon \cdot \operatorname{sign}(\nabla_{\Delta} \ell_{CE}(f_{\theta}(X + \Delta), Y)))$$

$$\Delta = Clamp(\Delta, -\varepsilon, \varepsilon), \quad \widetilde{X} = Clamp(X + \Delta, 0, 1)$$

Update weights of EMA model

$$\omega = (1 - \tau) * \theta + \tau * \omega$$

Hybrid Adversarial Training (NuAT-H)

B. Li, S. Wang, S. Jana, and L. Carin. Towards understanding fast adversarial training. arXiv preprint, arXiv:2006.03089, 2020

Experiments and Analysis

Results on CIFAR-10 (ResNet-18)

Method	# AT steps	Clean Acc	PGD (1 20	n-steps) 500	GAMA 100	AA (v1)
Normal	0	92.30	0.00	0.00	0.00	0.00
FGSM-AT	1	92.89	0.00	0.00	0.00	0.00
RFGSM-AT	1	89.24	35.02	34.17	33.87	33.16
ATF	1	71.77	43.53	43.52	40.34	40.22
FBF	1	82.83	46.41	46.03	43.85	43.12
R-MGM	1	82.29	46.23	45.79	44.06	43.72
GAT	1	80.49	53.13	53.08	47.76	47.30
GAT-WA	1	79.47	54.40	54.37	49.00	48.28
NuAT (Ours)	1	81.01	53.30	52.97	49.46	49.24
NuAT-WA (Ours)	1	82.21	54.14	53.95	50.97	50.75
PGD-AT	10	81.12	53.08	52.89	49.08	48.75
TRADES	10	81.47	52.73	52.61	49.22	49.06
TRADES-WA	10	80.19	52.98	52.88	49.49	49.39
AWP	11	81.99	55.60	55.52	51.65	51.45

Results on CIFAR-10 (WideResNet-34-10)

Method	AT-steps (epochs)	Clean Acc	PGD 100	GAMA 100	AA (v2)
FBF	1 (30)	82.05	45.57	43.13	43.10
GAT	1 (85)	85.17	55.12	50.76	50.12
GAT-WA	1 (85)	84.61	57.28	52.19	51.50
		Variants of	NuAT (Our	rs)	
NuAT	1 (55)	85.30	53.82	51.34	50.81
NuAT-H	$1(50_{+5})$	84.58	54.89	51.93	51.58
NuAT-WA	1 (50)	85.29	56.21	53.73	53.36
NuAT-WA-H	$1(25_{+2})$	81.98	54.82	51.41	51.14
NuAT-WA-H	$1(60_{+6})$	84.93	57.51	54.28	53.81
NuAT2	2 (55)	84.76	54.50	51.99	51.27
NuAT2-WA	2 (80)	86.32	57.74	55.08	54.76
TRADES	10 (110)	85.48	56.35	53.88	53.80
PGD	10 (200)	86.07	55.74	52.70	52.19
AWP	11 (200)	85.36	59.13	56.35	56.17

Results across different datasets

		R-10			Imagel	Net-100	MNIST					
	Clean Acc	PGD 500	GAMA 100	AA (v1)	Clean Acc	PGD 500	GAMA 100	AA (v1)	Clean Acc	PGD 500	GAMA 100	AA (v1)
Normal	92.30	0.00	0.00	0.00	81.44	0.00	0.00	0.00	99.20	0.00	0.00	0.00
RFGSM-AT	89.24	34.17	33.87	33.16	78.46	13.88	13.38	12.96	99.37	85.32	83.64	82.28
FBF	82.83	46.03	43.85	42.37	57.32	27.22	21.78	20.66	99.30	91.37	87.27	79.02
R-MGM	82.29	45.79	44.06	43.72	64.84	31.68	27.46	27.68	99.04	90.56	88.13	86.21
GAT	80.49	53.08	47.76	47.30	67.98	37.46	29.30	28.92	99.37	94.44	92.96	90.62
NuAT (Ours)	81.01	52.97	49.46	49.24	69.00	37.60	32.38	31.96	99.37	96.24	94.65	93.11
NuAT-WA (Ours)	82.21	53.95	50.97	50.75	68.40	38.68	33.22	33.16	99.36	96.30	94.70	93.10
TRADES	81.47	52.61	49.22	49.06	62.88	37.24	31.44	31.66	99.32	93.40	92.74	92.19
PGD-AT	81.12	52.89	49.08	48.75	68.62	36.56	32.24	32.98	99.27	93.98	92.80	91.81

Efficiency and Effectiveness of NuAT

Summary

Summary

- Nuclear Norm Adversarial Training (NuAT) to improve adversarial robustness at low computational cost
- **NuAT**: SOTA across various single-step defenses
- **NuAT2**: Achieves results better than some multi-step (10-step) defenses (TRADES, PGD-AT), and comparable to the SOTA defense, TRADES-AWP
- **NuAT-H**: Bridges the computation-accuracy trade-off between NuAT and NuAT2
- Scales to large network capacities such as WideResNet
- Scales to large datasets such as ImageNet-100.

Thank You!

Acknowledgements: This work was supported by Uchhatar Avishkar Yojana (UAY) project (IISC 10), MHRD, Govt. of India. Sravanti Addepalli is supported by a Google PhD Fellowship in Machine Learning. We are thankful for the support.