Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples

Sungyoon Lee¹ Woojin Lee² Jinseong Park³ Jaewook Lee³

¹Korea Institute for Advanced Study (KIAS)

²Dongguk University-Seoul ³Seoul National University

sungyoonlee@kias.re.kr

November 15, 2021

1 Introduction - Certifiable Training

2 Q. What is a key factor in certifiable training?

3 A. Smoothness

Introduction - Certifiable Training

Adversarial Examples

Adversarial Example

An input perturbed with a small adversarially designed perturbation that can change the network's prediction [Sze+13].

Lee et al.

Heuristic Defenses → Adaptive Attacks

To build a model that is robust to adversarial attacks, many heuristic defenses are proposed, but broken by adaptive attacks.

- d \rightarrow a (d is broken by a)
- Defensive distillation [Pap+16] $\rightarrow z/T$ [CW16], CW attack [CW17]
- ICLR 18 (preprocessing-based) → BPDA attack [ACW18]
- ICLR 18 (randomization-based) → EOT attack [Ath+18; ACW18]
- Many more → Adaptive attacks [Tra+20; CH20; Cro+20]

• • • •

Heuristic Defenses → Adaptive Attacks

To build a model that is robust to adversarial attacks, many heuristic defenses are proposed, but broken by adaptive attacks.

- d \rightarrow a (d is broken by a)
- Defensive distillation [Pap+16] $\rightarrow z/T$ [CW16], CW attack [CW17]
- ICLR 18 (preprocessing-based) → BPDA attack [ACW18]
- ICLR 18 (randomization-based) → EOT attack [Ath+18; ACW18]
- Many more → Adaptive attacks [Tra+20; CH20; Cro+20]

• • • •

To end this arms race of adversarial attack-defense, certifiable training (certified defense) is proposed [HA17; RSL18; WK18; Won+18; Dvi+18; MGV18; Gow+18; Zha+19; BV19; LLP20].

Empirical Risk Minimization

$$\min_{\theta \in \Theta} \mathbb{E}_{(x,y) \sim \mathcal{D}}[\ell(f_{\theta}(x), y)]$$

Adversarial Risk Minimization

$$\min_{\theta \in \Theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\max_{x' \in \mathbb{B}(x,\epsilon)} \ell(f_{\theta}(x'), y) \right]$$
(ARM)

(ERM)

2

く 何 ト く ヨ ト く ヨ ト

Worst-case loss: $\max_{x' \in \mathbb{B}(x,\epsilon)} \ell(f_{\theta}(x'), y)$

Certifiable Training

Adversarial Risk Minimization

$$\min_{\theta \in \Theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} [\max_{x' \in \mathbb{B}(x,\epsilon)} \ell(f_{\theta}(x'), y)]$$

Upper Bound Approximation

$$\max_{\mathbf{x}' \in \mathbb{B}(\mathbf{x},\epsilon)} \ell(f_{\theta}(\mathbf{x}'), \mathbf{y}) \le \ell^{UB}(\mathbf{x}, \mathbf{y}; \theta)$$

Certifiable training minimizes the upper bound to build a "certifiably" robust model.

Certified Training

$$\min_{\theta \in \Theta} \mathbb{E}_{(x,y) \sim \mathcal{D}}[\ell^{UB}(x,y;\theta)]$$

(CT)

Tightness

ヨト・イヨト

3

However, IBP [Gow+18] outperforms linear relaxation-based methods, especially when the perturbation is large, despite using much looser bounds.

	IBP		CROWN-IBP ($\beta = 1$)	CAP	OURS
train loss at the beginning	1.64	>	1.20	0.85	1.20
test error at the best checkpoint	73.19	<	75.82	73.91	70.92

Q. What is a key factor in certifiable training?

Lee et al. Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples 12 / 27

However, IBP outperforms linear relaxation-based methods, especially when the perturbation is large, despite using much looser bounds.

	IBP		CROWN-IBP ($\beta = 1$)	CAP	OURS
train loss at the beginning	1.64	>	1.20	0.85	1.20
test error at the best checkpoint	73.19	<	75.82	73.91	70.92

- Q1. Why does tighter bounds not result in a better performance?
- Q2. What other factors may influence the performance?

A. Smoothness

Lee et al. Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples 14 / 27

A D N A B N A B N A B N

æ

Total training loss: $\mathcal{L} = \mathbb{E}_{\mathcal{D}}[\ell]$

Certifiable Training

$$\min_{\theta \in \Theta} \mathcal{L}^*(\theta) \leq \min_{\theta \in \Theta} \mathcal{L}^{UB}(\theta)$$

(CD)

Formulation

: tightness of the upper bound $\mathcal{L}^{UB}(\theta)$

Optimization

: smoothness of the landscape of the objective function $\mathcal{L}^{UB}(\theta)$

Theorem (convergence rate of standard training)

Under some conditions,

$$\mathcal{L}(\theta_{t+1}) \leq \mathcal{L}(\theta_t) \left(1 - \alpha \gamma_t^{-1}\right) \tag{1}$$

for some $\alpha > 0$ where $\gamma_t = \frac{\|g_{t+1} - g_t\|}{\|g_t\|}$ with $g_t = \nabla_{\theta} \mathcal{L}(\theta_t)$.

Lower γ_t is favorable for the optimization.

Theorem (convergence rate of certifiable training)

With gradient descent using a step size within an interval I_t during the ramp-up period ($0 \le \epsilon_t \le \epsilon$), the loss \mathcal{L}^{ϵ} for the target perturbation ϵ is reduced with

$$\mathcal{L}^{\epsilon}(\boldsymbol{\theta}_{t+1}) \leq \mathcal{L}^{\epsilon}(\boldsymbol{\theta}_{t}) \left(1 - \frac{\mu}{2}\cos^{2}(\phi_{t}) \|\boldsymbol{H}_{t}^{\epsilon}\boldsymbol{u}_{t}\|^{-1}\right)$$
(2)

for $\mathbf{u}_t = \frac{\nabla_{\boldsymbol{\theta}} \mathcal{L}^{\epsilon_t}(\boldsymbol{\theta}_t)}{\|\nabla_{\boldsymbol{\theta}} \mathcal{L}^{\epsilon_t}(\boldsymbol{\theta}_t)\|}$ where $0 < \mu \leq \frac{\|\nabla_{\boldsymbol{\theta}} \mathcal{L}^{\epsilon}\|^2}{2\mathcal{L}^{\epsilon}}$, $\cos(\phi_t) = \frac{\nabla_{\boldsymbol{\theta}} \mathcal{L}^{\epsilon_T} \nabla_{\boldsymbol{\theta}} \mathcal{L}^{\epsilon_t}}{\|\nabla_{\boldsymbol{\theta}} \mathcal{L}^{\epsilon_t}\|}$ and \mathbf{H}_t^{ϵ} satisfies $\mathcal{L}^{\epsilon}(\boldsymbol{\theta}_{t+1}) = \mathcal{L}^{\epsilon}(\boldsymbol{\theta}_t) + \nabla_{\boldsymbol{\theta}} \mathcal{L}^{\epsilon}(\boldsymbol{\theta}_t)^T \Delta_t + \frac{1}{2} \Delta_t^T \mathbf{H}_t^{\epsilon} \Delta_t$ and $\Delta_t^T \mathbf{H}_t^{\epsilon} \Delta_t > 0$ with $\Delta_t = \boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_t$.

Lower $\|\boldsymbol{H}_{t}^{\epsilon}\boldsymbol{u}_{t}\|$ is favorable for the optimization. cf. $\|\boldsymbol{H}_{t}^{\epsilon}\boldsymbol{u}_{t}\| = \|\boldsymbol{H}_{t}^{\epsilon}\boldsymbol{g}_{t}^{\epsilon_{t}}\|/\|\boldsymbol{g}_{t}^{\epsilon_{t}}\| = \|\boldsymbol{H}_{t}^{\epsilon}\Delta_{t}\|/\|\Delta_{t}\| \approx \|\boldsymbol{g}_{t+1}^{\epsilon} - \boldsymbol{g}_{t}^{\epsilon}\|/\|\Delta_{t}\|$

く 何 ト く ヨ ト く ヨ ト

We used the following non-smoothness measures:

- Loss variation: $|\mathcal{L}^{\epsilon_t}(\theta(\lambda)) - \mathcal{L}^{\epsilon_t}(\theta(0))|$ for $\lambda \in [0, 5]$ where $\theta(\lambda) \equiv \theta_t - \lambda \eta \nabla_{\theta} \mathcal{L}^{\epsilon_t}(\theta_t)$
- Grad Difference: $\|\nabla_{\boldsymbol{\theta}} \mathcal{L}^{\epsilon_t}(\boldsymbol{\theta}_t) \nabla_{\boldsymbol{\theta}} \mathcal{L}^{\epsilon_t}(\boldsymbol{\theta}_{t+1})\|$
- Cosine Distance: $1 \cos(\nabla_{\theta} \mathcal{L}^{\epsilon_t}(\theta_t), \nabla_{\theta} \mathcal{L}^{\epsilon_t}(\theta_{t+1}))$

Higher non-smoothness measures indicate less smooth loss landscape

Experimental Results

æ

Non-smoothness measures

Higher (non-smoothness) measures indicate less smooth loss landscape.

Lee et al.

Tightness (small ϵ)

cf. CBP₁₁ = CROWN-IBP ($\beta = 1$) Δ (Certified Acc) indicates the difference of the certified accuracy with the proposed method when the same architecture is used.

Smoothness (large ϵ)

Lee et al.

cf.
$$CBP_{10} = CROWN-IBP \ (\beta = 1 \rightarrow \beta = 0)$$

æ

Tightness (small ϵ) & Smoothness (large ϵ)

< 行

э

Table: Test errors (Standard / PGD / Verified error).Bold and underline numbers are the 1st and 2nd lowest verified error.

Data	$\epsilon_{\text{test}}(l_{\infty})$	IBP	CROWN-IBP ($\beta = 1$)	САР	OURS	
MNIST	0.1	1.18 / 2.16 / 3.52	1.07 / 1.69 / 2.10	0.80 / 1.73 / 3.19	1.09 / 1.77 /	<u>2.36</u>
	0.2	2.00 / 3.29 / <u>6.31</u>	2.99 / 5.50 / 7.97	3.22 / 6.72 / 11.06	1.70 / 3.44 /	4.34
	0.3	3.50 / 5.85 / <u>10.45</u>	5.73 / 10.76 / 16.28	19.19 / 35.84 / 47.85	3.49 / 5.59 /	9.79
	0.4	3.50 / 7.30 / <u>17.96</u>	5.73 / 14.63 / 23.80	-	3.49 / 6.77 /	15.42
CIFAR-10 (Shallow)	² /255	37.98 / 49.40 / 55.39	32.48 / 42.77 / 50.15	28.80 / 38.95 / 48.50	31.49 / 42.73	/ <u>49.42</u>
	4/255	46.42 / 57.42 / 62.80	45.56 / 58.24 / 64.47	40.78 / 52.62 / <u>61.88</u>	42.53 / 55.55	61.52
	6/255	52.84 / 63.92 / <u>68.79</u>	54.72 / 65.28 / 71.04	49.20 / 60.85 / 69.03	50.19 / 61.88	66.90
	8/255	55.71 / 66.79 / <u>70.95</u>	61.37 / 70.66 / 75.37	56.77 / 66.78 / 73.02	56.01 / 66.17	69.70
	16/255	67.10 / 75.12 / <u>78.26</u>	76.65 / 81.90 / 84.42	75.11 / 80.67 / 82.07	65.93 / 75.39	77.87
CIFAR-10	2/255	39.17 / 48.80 / 55.48	29.02 / 40.17 / 46.22	-	31.48 / 42.52	/ <u>47.89</u>
(Deep)	8/255	59.53 / 65.98 / <u>70.86</u>	59.43 / 65.79 / 73.34	-	50.78 / 62.58	68.44
SVHN	0.01	19.91 / 34.12 / 43.83	17.25 / 30.84 / 39.88	16.88 / 30.16 / 37.09	16.41 / 30.43	/ <u>39.44</u>

cf. There are more comparison results (RS [Xia+18], DiffAI [MGV18], COLT [BV19], and CBP₁₀ [Zha+19]) in the paper.

э

Thank You

https://github.com/sungyoon-lee/LossLandscapeMatters

References

- Anish Athalye, Nicholas Carlini, and David Wagner. "Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples". In: International Conference on Machine Learning. 2018, pp. 274–283.
- Anish Athalye et al. "Synthesizing robust adversarial examples". In: International conference on machine learning. PMLR. 2018, pp. 284–293.
- Mislav Balunovic and Martin Vechev. "Adversarial training and provable defenses: Bridging the gap". In: International Conference on Learning Representations. 2019.
- Francesco Croce and Matthias Hein. "Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks". In: arXiv preprint arXiv:2003.01690 (2020).
- Francesco Croce et al. "RobustBench: a standardized adversarial robustness benchmark". In: arXiv preprint arXiv:2010.09670 (2020).
- Nicholas Carlini and David Wagner. "Defensive distillation is not robust to adversarial examples". In: arXiv preprint arXiv:1607.04311 (2016).
- Nicholas Carlini and David Wagner. "Towards evaluating the robustness of neural networks". In: 2017 IEEE Symposium on Security and Privacy (SP). IEEE. 2017, pp. 39–57.
- Krishnamurthy Dvijotham et al. "Training verified learners with learned verifiers". In: arXiv preprint arXiv:1805.10265 (2018).
 - Sven Gowal et al. "On the effectiveness of interval bound propagation for training verifiably robust models". In: arXiv preprint arXiv:1810.12715 (2018).
- Matthias Hein and Maksym Andriushchenko. "Formal guarantees on the robustness of a classifier against adversarial manipulation". In: Advances in Neural Information Processing Systems. 2017, pp. 2266–2276.
- Sungyoon Lee, Jaewook Lee, and Saerom Park. "Lipschitz-Certifiable Training with a Tight Outer Bound". In: Advances in Neural Information Processing Systems 33 (2020).
 - Matthew Mirman, Timon Gehr, and Martin Vechev. "Differentiable abstract interpretation for provably robust neural networks". In: International Conference on Machine Learning. 2018, pp. 3575–3583.
- Nicolas Papernot et al. "Distillation as a defense to adversarial perturbations against deep neural networks". In: 2016 IEEE Symposium on Security and Privacy (SP). IEEE. 2016, pp. 582–597.
- Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. "Semidefinite relaxations for certifying robustness to adversarial examples". In: Advances in Neural Information Processing Systems. 2018, pp. 10877–10887.
- Christian Szegedy et al. "Intriguing properties of neural networks". In: arXiv preprint arXiv:1312.6199 (2013).
- Florian Tramer et al. "On adaptive attacks to adversarial example defenses". In: arXiv preprint arXiv:2002.08347 (2020).
- Eric Wong and Zico Kolter. "Provable defenses against adversarial examples via the convex outer adversarial polytope". In: International Conference on Machine Learning. PMLR. 2018, pp. 5286–5295.
- Eric Wong et al. "Scaling provable adversarial defenses". In: Advances in Neural Information Processing Systems. 2018, pp. 8400–8409.
- Kai Y Xiao et al. "Training for faster adversarial robustness verification via inducing relu stability". In: arXiv preprint arXiv:1809.03008 (2018).
- Huan Zhang et al. "Towards Stable and Efficient Training of Verifiably Robust Neural Networks". In: International Conference on Learning Representations. 2019.