On Success and Simplicity: A Second Look at Transferable Targeted Attacks

Zhengyu Zhao, Zhuoran Liu, Martha Larson Radboud University, Netherlands

Non-targeted vs. targeted adversarial images

Persian cat ×

Non-targeted: any wrong class (relevant class is sufficient)

Targeted: specific class (could be highly irrelevant)

Transferability of targeted adversarial images

Source model (white box) : ResNet50 Target model (black box) : DenseNet121, VGG16, Inception-v3 OriginI class: "hummingbird" Target class: "coffee mug" Perturbation optimized against ResNet50 Transferable Adversarial image Original image ╋ ResNet50: "coffee mug" × DenseNet121: "coffee mug" × VGG16: "coffee mug" × **ResNet50**: "hummingbird" $\sqrt{}$ $L_{\infty} = 16/255$

Inception-v3: "coffee mug" ×

Existing targeted transfer methods

- Simple methods: (reputed to be) insufficient.
 - Gradient accumulation (MI^[1], NI^[2])
 - Data augmentation (TI^[3], DI^[4])
- Resource-intensive methods: SOTA.
 - Training target-class-specific classifiers (FDA^[5,6])
 - Training *target-class-specific* generators (CDA^[7], TTP^[8])
- 1. Dong et al. Boosting Adversarial Attacks with Momentum. CVPR'18.
- 2. Lin et al. Nesterov Accelerated Gradient and Scale Invariance for Adversarial Attacks. ICLR'20
- 3. Dong et al. Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks. CVPR'19
- 4. Xie et al. Improving Transferability of Adversarial Examples with Input Diversity. CVPR'19
- 5. Inkawhich et al. Transferable Perturbations of Deep Feature Distributions. ICLR'20
- 6. Inkawhich et al. Perturbing Across the Feature Hierarchy to Improve Standard and Strict Blackbox Attack Transferability. NeurIPS'20
- 7. Naseer et al. Cross-Domain Transferability of Adversarial Perturbations. NeurIPS'19
- 8. Naseer et al. On Generating Transferable Targeted Perturbation. ICCV'21

Main message

Previous research: Simple methods << resource-intensive methods Our investigation: Simple methods > resource-intensive methods

Transfer success rates (%)					
Bound	Attack	D121	V16	D121-ens	V16-ens
$\epsilon = 16$	TTP [8]	79.6	78.6	92.9	89.6
	ours	75.9	72.5	99.4	97.7
$\epsilon = 8$	TTP [8]	37.5	46.7	63.2	66.2
	ours	44.5	46.8	92.6	87.0

5

New insights into simple methods

- 1. Targeted transferability requires more iterations to converge.
- \rightarrow Unreasonable evaluation (only <20 iterations).
 - optimization perspective: meaningless.
 - practical perspective: unrealistic.

New insights into simple methods

2. Cross-Entropy (CE) loss causes decreasing gradient problem.

 \rightarrow We use a naive Logit loss (not novel but its advantage has not been recognized so far).

New realistic transfer scenarios

- 1. Ensemble transfer scenario with **low model similarity**.
- 2. Worse-case transfer scenario with low-ranked targets.
- 3. Transfer scenario on a real-world system, Google Cloud Vision API.

Scenario 1: ensemble transfer with low model similarity

9

Attack	-Inc-v3	-Inc-v4	-IncRes-v2	-Res50	-Res101	-Res152	Average
CE	48.8/85.3	47.2/83.3	47.5/83.9	50.9/89.8	58.5/ 93.2	56.7/90.7	51.6/87.7
Po+Trip	59.3 /84.4	55.0 /82.4	51.4/80.8	56.9/85.0	60.5/87.9	57.6/85.7	56.8/84.4
Logit	56.4/ 85.5	52.9/ 85.8	54.4/85.1	57.5/90.0	64.4 /91.4	61.3/90.8	57.8/88.1

Equally high performance in ensemble transfer with high model similarity.

Logit loss largerly outperforms the others in ensemble transfer with low model similarity.

Scenario 2: worse case with low-ranked target classes

Targeted transfer is harder for lower-ranked target classes.

Attack	2nd	10th	200th	500th	800th	1000th
CE	89.9	76.7	49.7	43.1	37.0	25.1
Po+Trip	82.6	77.6	58.4	53.6	49.1	38.2
Logit	83.8	81.3	75.0	71.0	65.1	52.8

Scenario 3: real-world attack on Google Cloud Vision API

Logit achieves substantial success rates (%).

	CE	Po+Trip	Logit
Targeted	7	8	18
Non-targeted		44	51

Successful targeted adversarial images.

Three future directions

Finding: Transferability on specific models (Inception) are very low. \rightarrow 1. Understanding influence of model architectures on transferability.

Finding: Robust models may have different transfer properties. \rightarrow 2. Exploring targeted transferability on robust models.

Finding: Simple and resource-intensive methods have different merits. \rightarrow 3. Conducting a comprehensive comparison between these two types.

Thank you!