Learning Graph Models for Retrosynthesis Prediction

Vignesh Ram Somnath

Charlotte Bunne

Connor Coley

Andreas Krause

Regina Barzilay

Outline

- Problem Introduction
- Prior Work
- Model Formulation
- Experiments and Conclusion

Retrosynthesis

Given a target molecule, predict precursors that can be used to design it

Ibuprofen

Ibuprofen precursors

Prior Work: Template-Based

Example Reaction

Corresponding Template

C_{ar} = Aromatic carbon C_{al} = Aliphatic carbon

Coley et al. (2017), Segler et al. (2017), Dai et al. (2019)

Prior Work: Template-Based

Example Reaction

Corresponding Template

C_{ar} = Aromatic carbon C_{al} = Aliphatic carbon

- Coverage vs scalability tradeoff
- Relevance: Rules for a given molecule

and **ETH**zürich

Coley et al. (2017), Segler et al. (2017), Dai et al. (2019)

Prior Work: Template-Based

Example Reaction

Corresponding Template

 C_{ar} = Aromatic carbon C_{al} = Aliphatic carbon

Coley et al. (2017), Segler et al. (2017), Dai et al. (2019)

- Coverage vs scalability tradeoff
- Relevance: Rules for a given molecule

and **ETH** zürich

Advantages:

• Interpretable - Knowledge of template (and reaction type)

Disadvantages:

- Incomplete coverage of test set
- Cannot generalize outside rule set

Prior Work: Template-Free

Cc1cccc(C#C[Si](C)(C)C)n1.Cn1nccc1-c1ccc(Br)cc1

Cc1cccc(C#Cc2ccc(-c3ccnn3C)cc2)n1

Schwaller et al. (2019)Zheng et al. (2019)

Chen et al. (2020)

Figure: http://jalammar.github.io/illustrated-transformer/

Prior Work: Template-Free

Cc1cccc(C#C[Si](C)(C)C)n1.Cn1nccc1-c1ccc(Br)cc1

Discover reaction rules automatically

and **ETH**zürich

Figure: http://jalammar.github.io/illustrated-transformer/

Schwaller et al. (2019) Zheng et al. (2019)Chen et al. (2020)

Prior Work: Template-Free

Cc1cccc(C#C[Si](C)(C)C)n1.Cn1nccc1-c1ccc(Br)cc1

Discover reaction rules automatically

and **ETH** zürich

Figure: http://jalammar.github.io/illustrated-transformer/

Schwaller et al. (2019) Zheng et al. (2019)Chen et al. (2020)

Advantages:

• Flexibility in learning transformations

Disadvantages:

- Poor interpretability
- Fails to utilize conserved substructures

Prior Work: Semi-Template-Based

Prior Work: Semi-Template-Based

Advantages:

- Closer to a chemist's intuition
- 2. Improved interpretability

Disadvantages:

Fails to utilize conserved 1. substructures in synthon completion

Motivation

Build a retrosynthesis model to identify and utilize conserved substructures

Motivation

Build a retrosynthesis model to identify and utilize conserved substructures

Advantages

- Interpretability Captures a chemists workflow about retrosynthesis
- Generalization Stronger inductive biases, fewer invalid suggestions

Efficiency - More efficient use of the data, by not generating/completing molecules from scratch

Edit Prediction

Edit Prediction

Edit Prediction

Synthon Completion

Edit Prediction

Synthon Completion

and **ETH**zürich

Leaving Groups subgraphs added to synthons to produce reactants

Edit Prediction

Extracting Edits

Compare atom-maps of products and reactants to identify atoms/bonds undergoing a change

Edit Prediction

Extracting Edits

Compare atom-maps of products and reactants to identify atoms/bonds undergoing a change

Initial Prediction Task

- Use atom and bond representations to predict scores for possible edits
- Allowed edits:

Whether the hydrogen atom count for a given atom changes (0 or 1) Change in the bond type of a given bond (5 possible values)

Edit Prediction

Extracting Edits

Compare atom-maps of products and reactants to identify atoms/bonds undergoing a change

Initial Prediction Task

- Use atom and bond representations to predict scores for possible edits
- Allowed edits:
 - Whether the hydrogen atom count for a given atom changes (0 or 1) Change in the bond type of a given bond (5 possible values)

Edit Correction

- Leverage dependencies between edits to update initial edit scores e.g. aromatic rings are stable and tend to remain unchanged
- LSTM style update on line-graph based representations

Train with cross-entropy loss over possible edits in the molecule

and **ETH** zürich

Synthon Completion

Leaving Group Vocabulary Extraction

- Extract subgraphs based on atom-maps only present in reactants
- Small vocabulary size covers 99.7% of the test set

Synthon Completion

Leaving Group Vocabulary Extraction

- Extract subgraphs based on atom-maps only present in reactants
- Small vocabulary size covers 99.7% of the test set

Classification problem instead of a generative one

- Predict the correct leaving group given a synthon
- Teacher forcing during training

Synthon Completion

Leaving Group Vocabulary Extraction

- Extract subgraphs based on atom-maps only present in reactants
- Small vocabulary size covers 99.7% of the test set

Classification problem instead of a generative one

- Predict the correct leaving group given a synthon
- Teacher forcing during training

Experimental Setup

11

Experimental Setup

Dataset

- USPTO-50k Standard benchmark dataset
- 50K reactions across 10 reaction classes
- Training/validation/test in a 8:1:1 split (40K train, 5K valid, 5K test)

11

Experimental Setup

Dataset

- USPTO-50k Standard benchmark dataset
- 50K reactions across 10 reaction classes
- Training/validation/test in a 8:1:1 split (40K train, 5K valid, 5K test)

Evaluation

- Top-*n* accuracy (n = 1, 3, 5, 10)
- Compare canonical SMILES of generated reactants to ground truth
- Reaction class known vs unknown

and **ETH** zürich

11

Retrosynthesis Performance

		Top-n Accuracy (%)							
Model		Reaction class known				Reaction class unknown			
	n =	1	3	5	10	1	3	5	10
Template-Based									
Retrosim [4]		52.9	73.8	81.2	88.1	37.3	54.7	63.3	74.1
NEURALSYM [19]		55.3	76.0	81.4	85.1	44.4	65.3	72.4	78.9
GLN [8]		64.2	79.1	85.2	90.0	52.5	69.0	75.6	83.7
DUALTB [21]		67.7	84.8	88.9	92.0	55.2	74.6	80.5	86.9
Template-Free									
SCROP [27]		59.0	74.8	78.1	81.1	43.7	60.0	65.2	68.7
LV-TRANSFORMER [2]		-	-	-	-	40.5	65.1	72.8	79.4
DUALTF [21]		65.7	81.9	84.7	85.9	53.6	70.7	74.6	77.0
Semi-Template-Based									
G2Gs [20]		61.0	81.3	86.0	88.7	48.9	67.6	72.5	75.5
RetroXpert [26]		62.1	75.8	78.5	80.9	50.4	61.1	62.3	63.4
GRAPHRETRO		63.9	81.5	85.2	88.1	53.7	68.3	72.2	75.5

and **ETH**zürich

Example Predictions - Correct

Product

True Reactants

Predicted Reactants

Example Predictions - Incorrect

Incorrect edit, leaving groups predicted can't salvage the prediction

True Reactants

Predicted Reactants

Example Predictions - Incorrect

Correct edit, but flipped leaving groups

Product

and **ETH**zürich

N Br

True Reactants

Predicted Reactants

- Propose a semi-template based method for retrosynthesis prediction
- Improves top-1 accuracy over previous semi-template methods and template-free methods

- Propose a semi-template based method for retrosynthesis prediction
- Improves top-1 accuracy over previous semi-template methods and template-free methods

Future Work

Edit prediction performance is a bottleneck to overall performance

- Propose a semi-template based method for retrosynthesis prediction
- Improves top-1 accuracy over previous semi-template methods and template-free methods

Future Work

Edit prediction performance is a bottleneck to overall performance Need more chemically meaningful priors and edit correction mechanisms

- Propose a semi-template based method for retrosynthesis prediction
- Improves top-1 accuracy over previous semi-template methods and template-free methods

Future Work

- Edit prediction performance is a bottleneck to overall performance Need more chemically meaningful priors and edit correction mechanisms
- Extend synthon completion to predict a single reactant from multiple reactants

and **ETH**zürich

