

SADGA: Structure-Aware Dual Graph Aggregation Network for Text-to-SQL

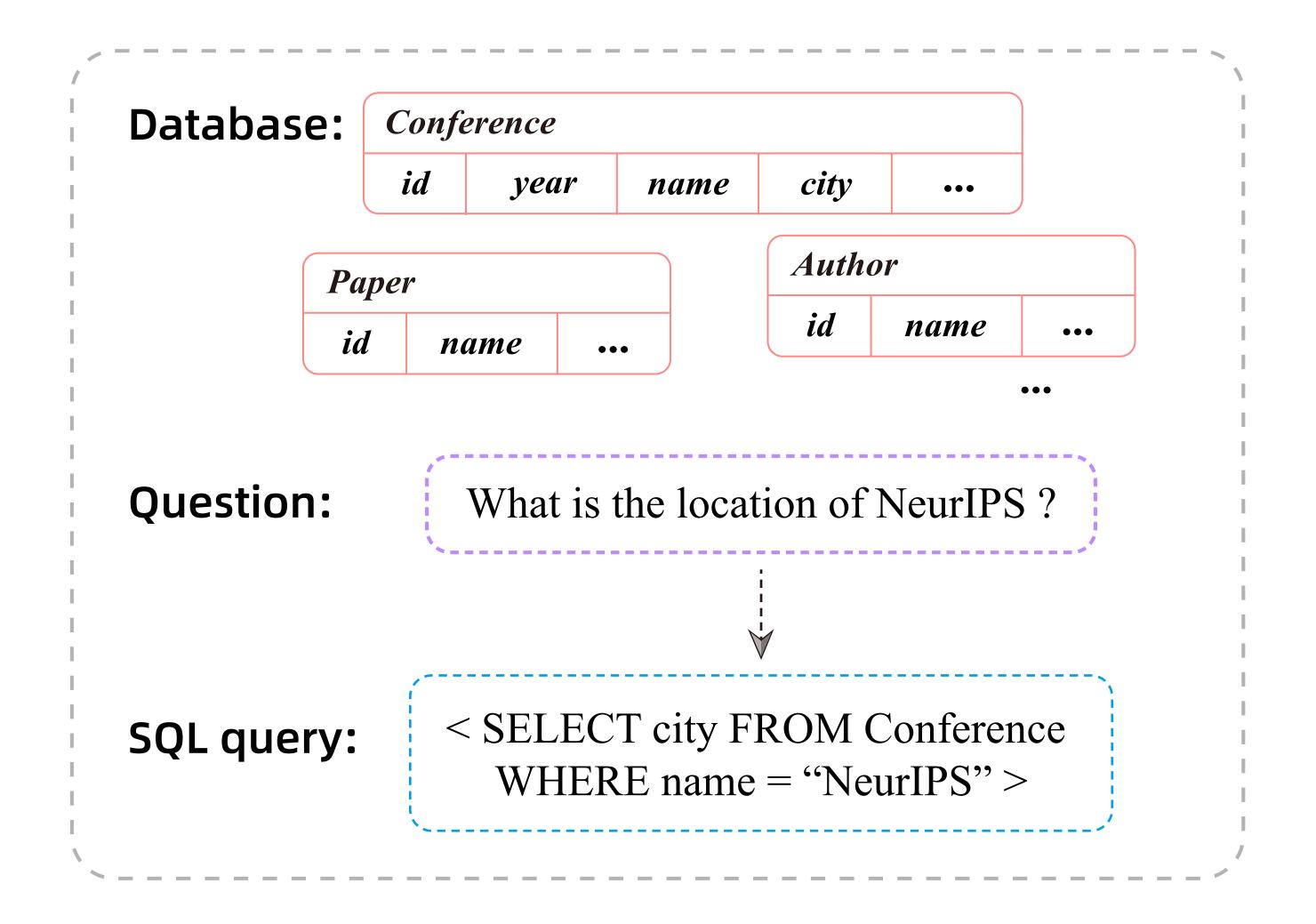
School of Computer Science, Guangdong University of Technology, Guangzhou, China ² College of Science, Shantou University, Shantou, China cairuichu@gdut.edu.cn, yuanjinjie0320@gmail.com hpakyim@gmail.com, zfhao@gdut.edu.cn

Ruichu Cai¹, Jinjie Yuan¹, Boyan Xu¹, Zhifeng Hao^{1,2}

NeurIPS 2021

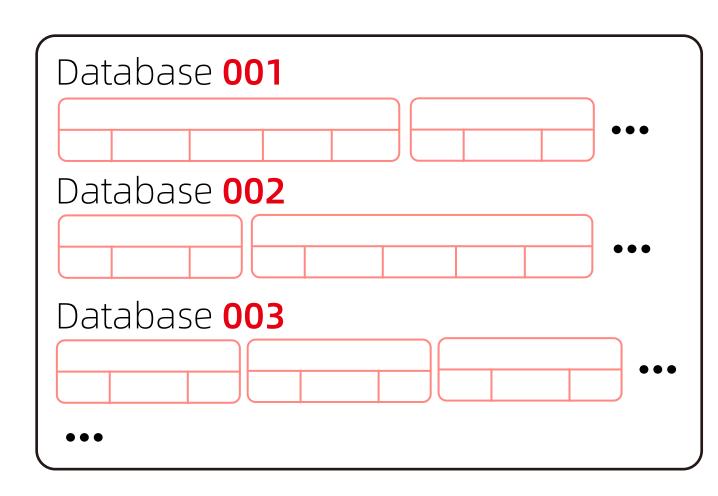
Introduction: Text-to-SQL

• Given a question and a database, automatically generate a SQL query.



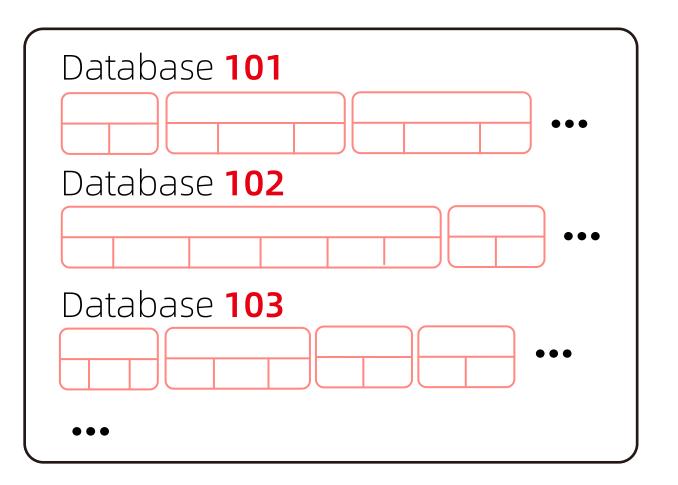
Introduction: Cross-Domain Text-to-SQL

The **Train** Set Databases



• **Cross-Domain** Text-to-SQL: Generalize the model to **unseen** database schema.

The **Test** Set Databases



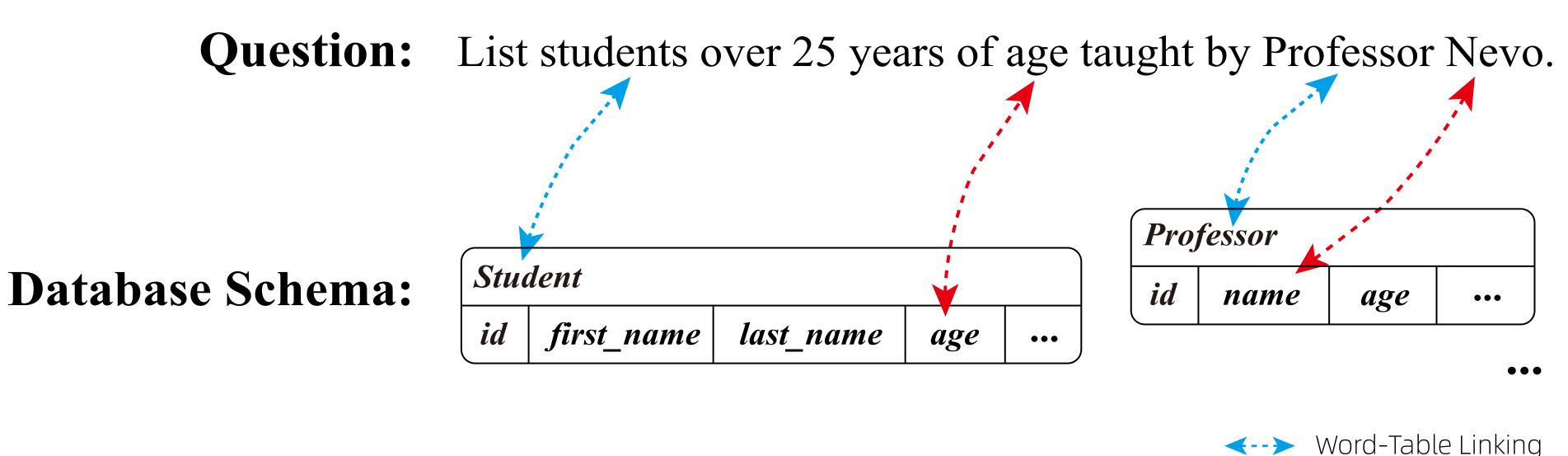
The databases do **not overlap** between the train and test sets.

Core Issue: Question-Schema Linking

How to build the linking between the natural language question and database schema?

Core Issue: Question-Schema Linking

How to build the linking between the natural language question and database schema?



←-> Word-Column Linking

Existing Works

Matching-based, e.g., IRNet [ACL 2019]:

• Use a simple string matching approach to link the question words and tables/columns.

Existing Works

Matching-based, e.g., IRNet [ACL 2019]:

Learning-based, e.g., RATSQL [ACL 2020]:

and schema with **pre-defined** relations.

Use a simple string matching approach to link the question words and tables/columns.

• Apply a **Relation-Aware Transformer** to globally learn the linking over the question

Limitations

a. The **structural gap** between the encoding process of the question and database schema; b. Highly relying on **pre-defined** string-match linking maybe result in:

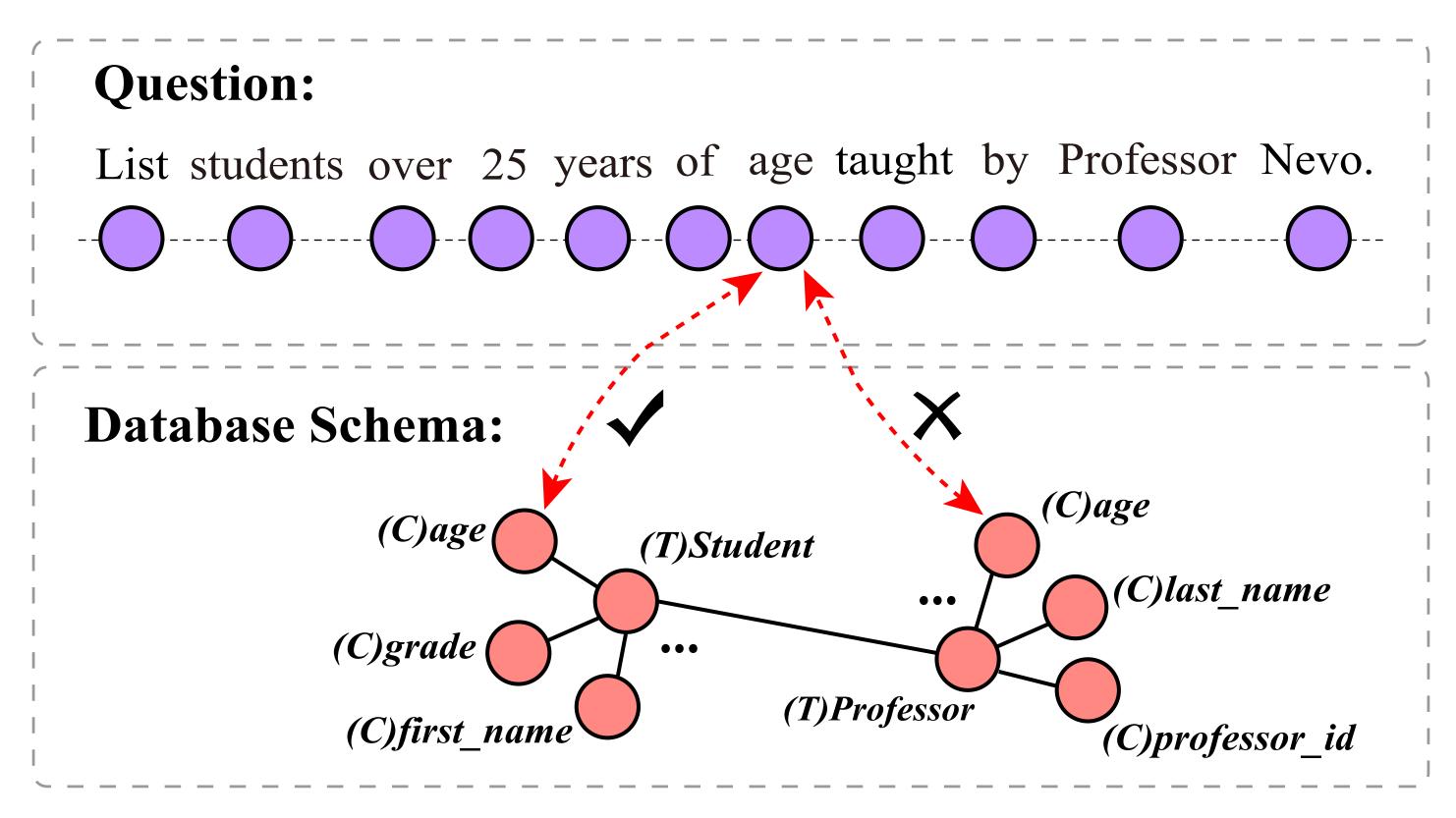
- (i) unsuitable linking,

(ii) the latent association between question words and tables/columns to be undetectable.

Limitations

a. The **structural gap** between the encoding process of the question and database schema; b. Highly relying on **pre-defined** string-match linking maybe result in:

- (i) unsuitable linking,



(ii) the latent association between question words and tables/columns to be undetectable.

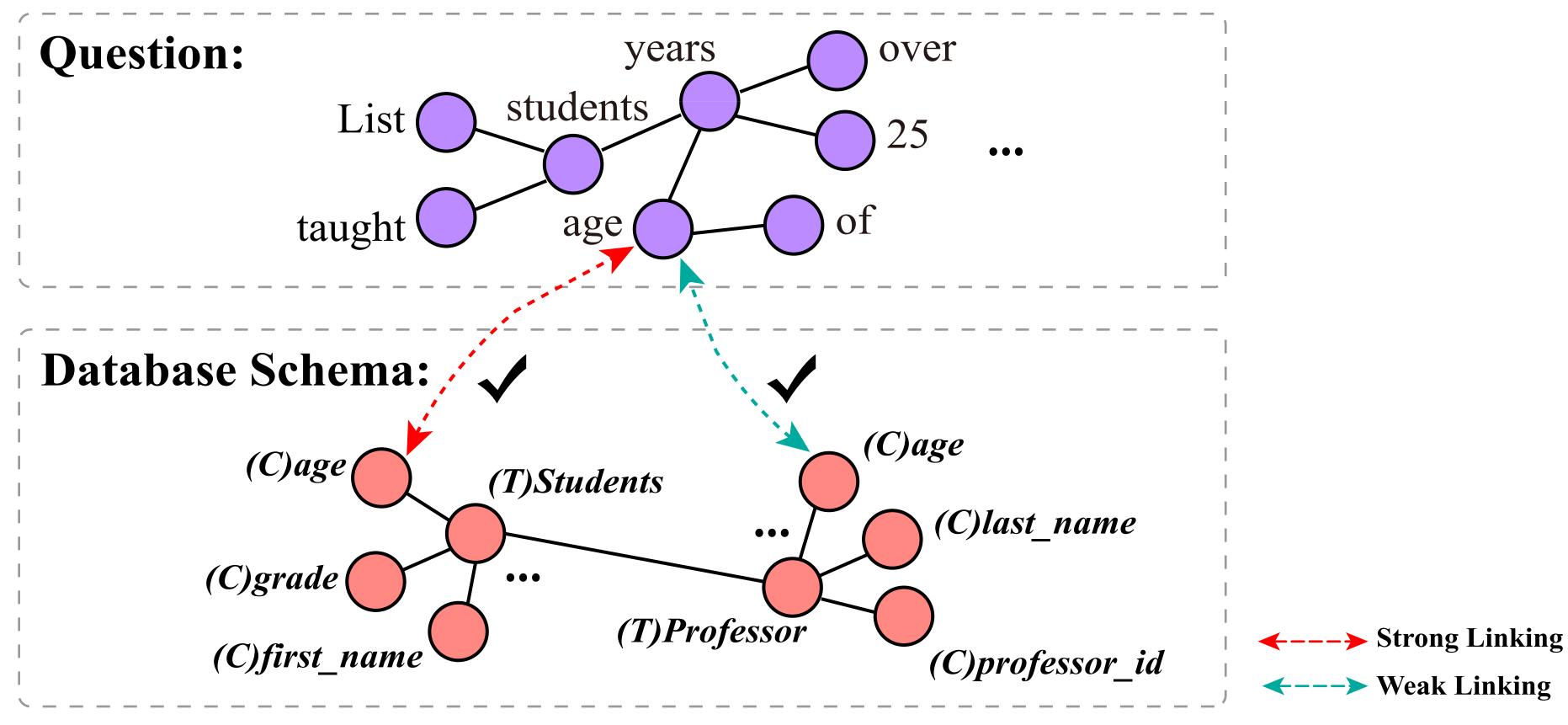
Our Solution

structural information.

We propose a Structure-Aware Dual Graph Aggregation Network (SADGA) to perform Question-Schema Linking fully taking advantage of the **global** and **local**

Our Solution

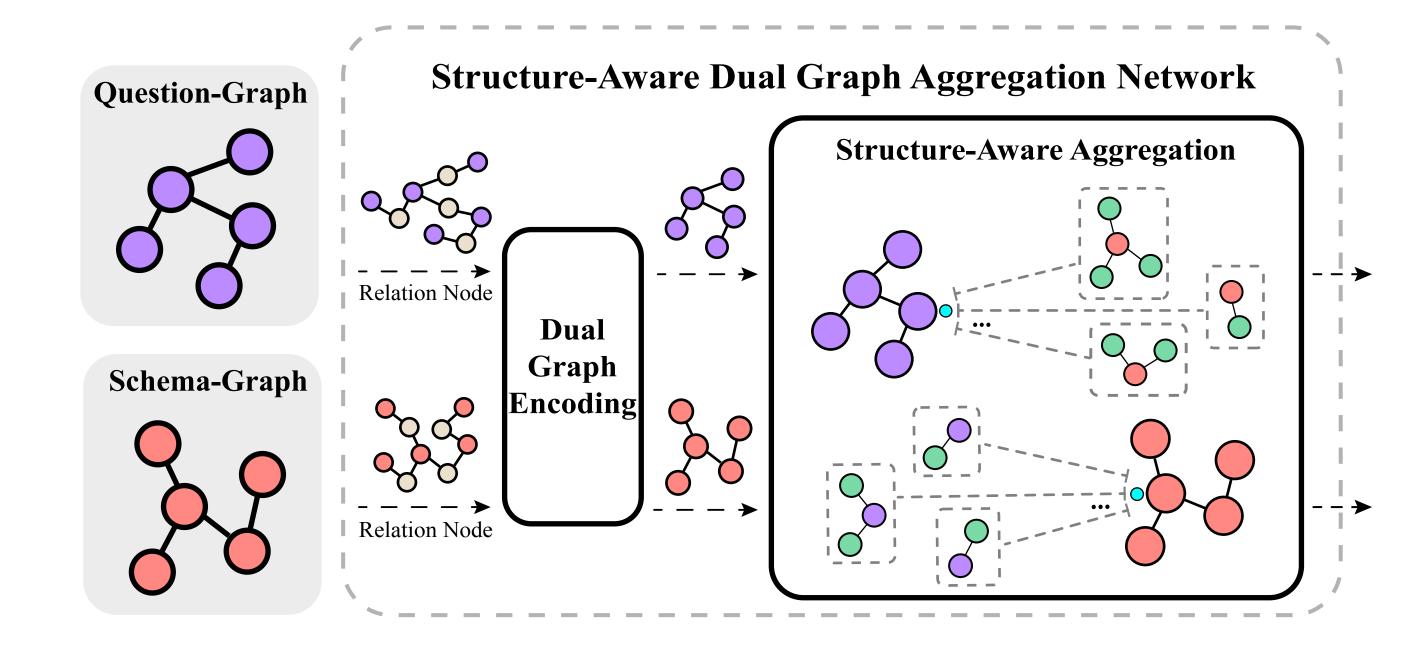
structural information.



We propose a Structure-Aware Dual Graph Aggregation Network (SADGA) to perform Question-Schema Linking fully taking advantage of the **global** and **local**

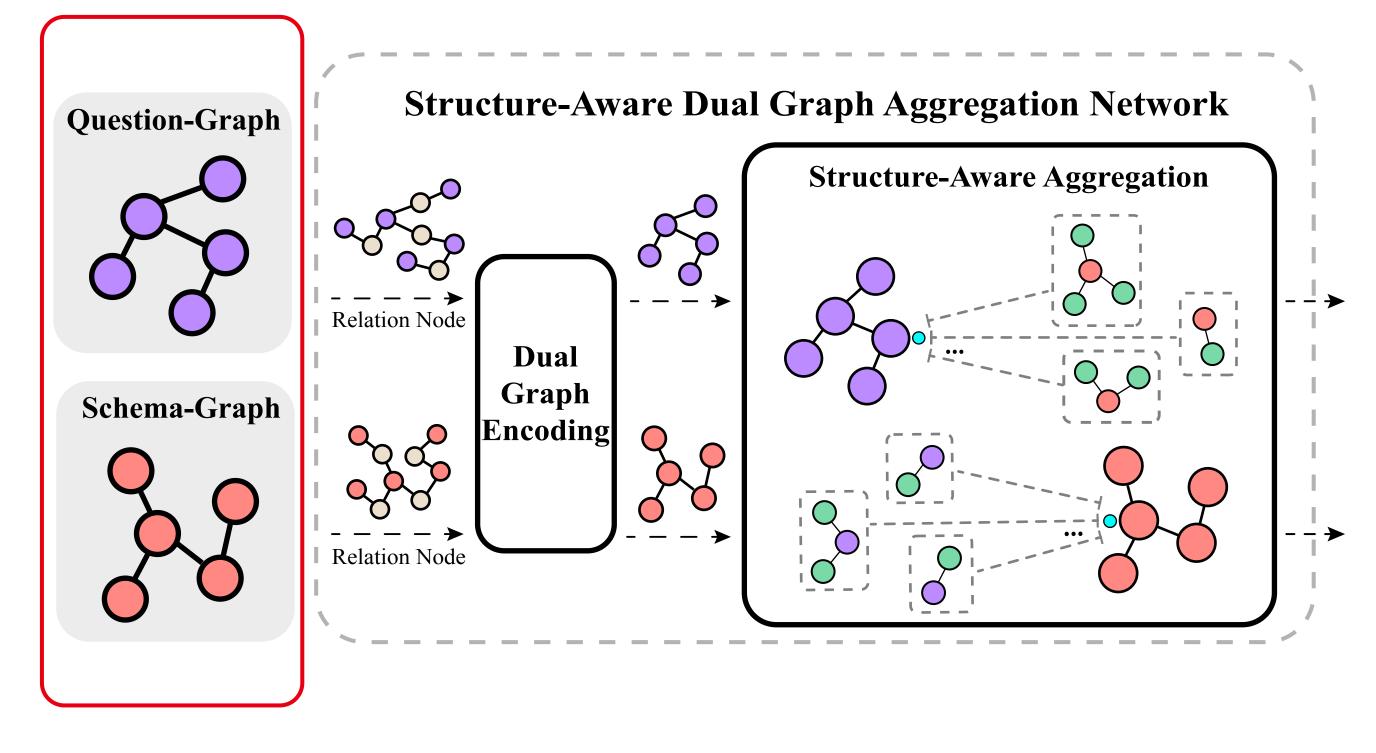
Structure-Aware Dual Graph Aggregation Network

- A. Dual-Graph Construction
- **B. Dual-Graph Encoding**
- **C.** Structure-Aware Aggregation
 - C.1 Global Graph Linking
 - C.2 Local Graph Linking
 - C.3 Dual-Graph Aggregation Mechanism



Structure-Aware Dual Graph Aggregation Network

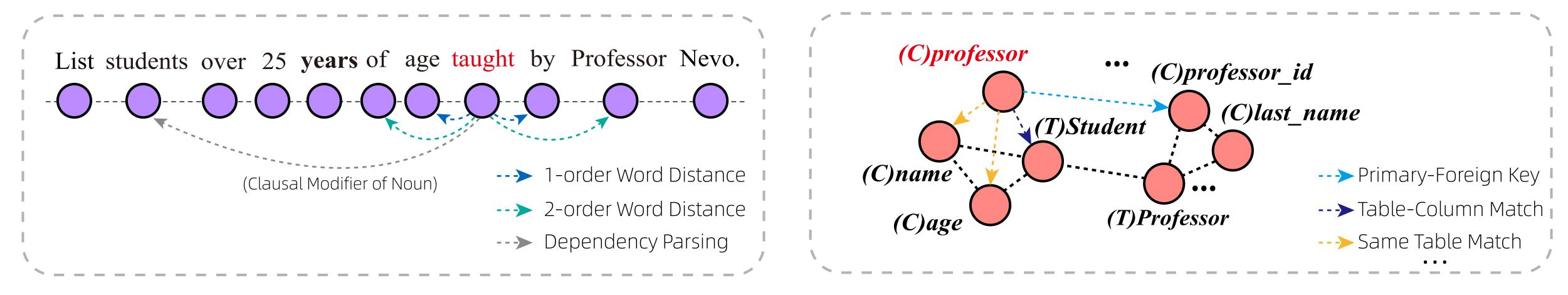
- **A. Dual-Graph Construction**
- **B. Dual-Graph Encoding**
- **C.** Structure-Aware Aggregation
 - C.1 Global Graph Linking
 - C.2 Local Graph Linking
 - C.3 Dual-Graph Aggregation Mechanism



A. Dual-Graph Construction

Question-Graph

Take the word **taught** as a example:



Cross-Graph Relations

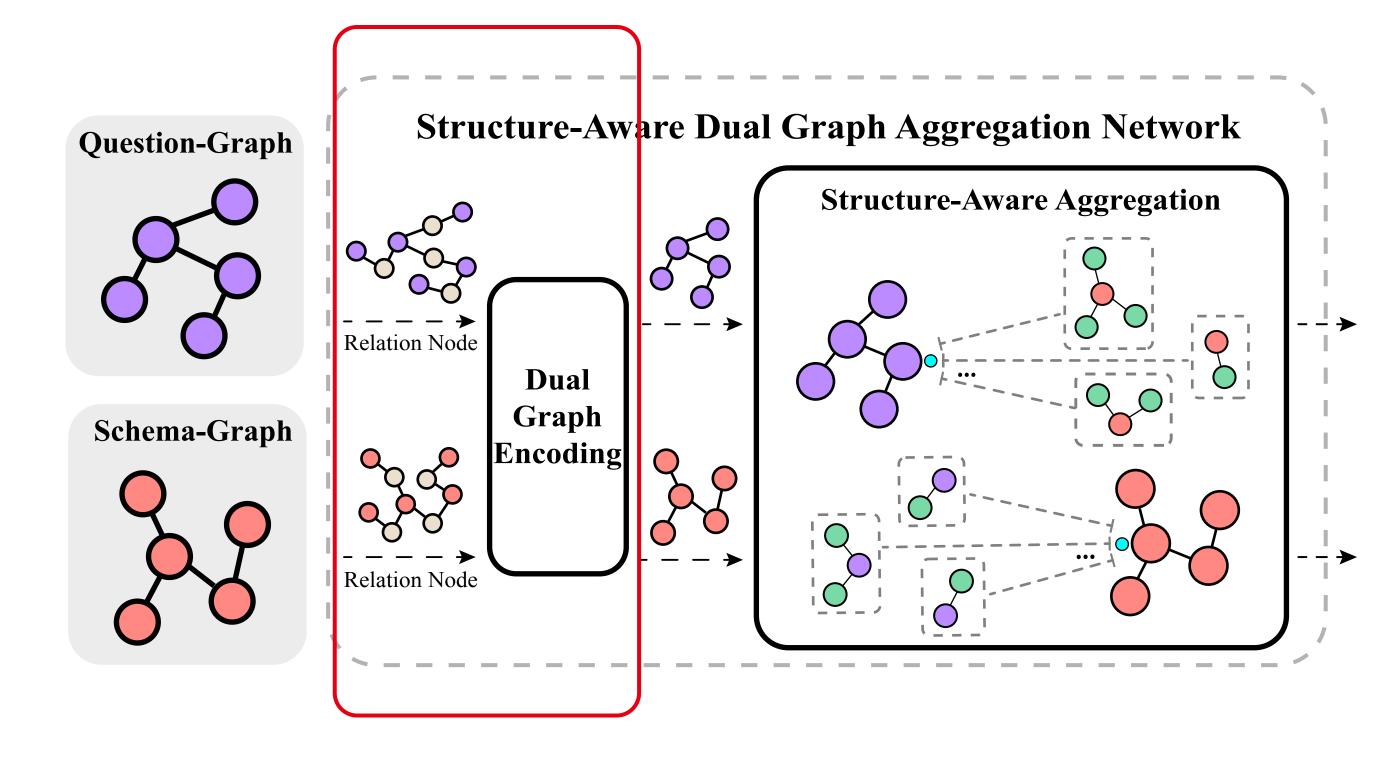
Word-Table: Exact String Match, Partial String Match Word-Column: Exact String Match, Partial String Match, Value Match

Schema-Graph

Take the column **professor** as a example:

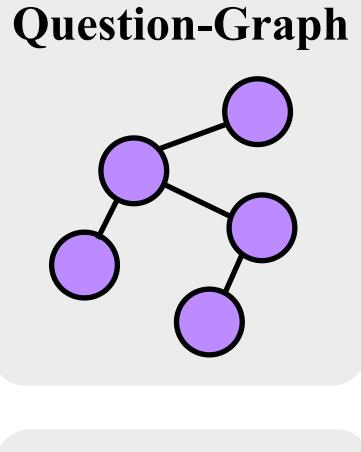
Structure-Aware Dual Graph Aggregation Network

- A. Dual-Graph Construction
- **B. Dual-Graph Encoding**
- **C. Structure-Aware Aggregation**
 - C.1 Global Graph Linking
 - C.2 Local Graph Linking
 - C.3 Dual-Graph Aggregation Mechanism

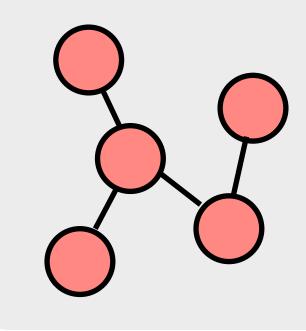


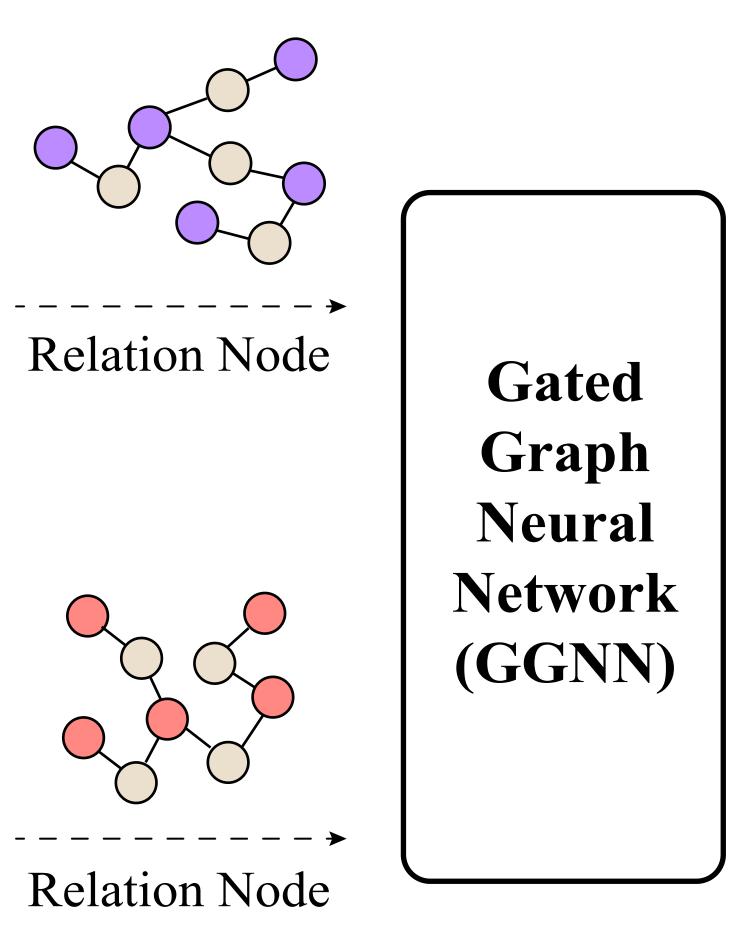
B. Dual-Graph Encoding

• Gated Graph Neural Network (GGNN) is employed to encode the node representation of dual-graph by performing message propagation among the **self-structure**.



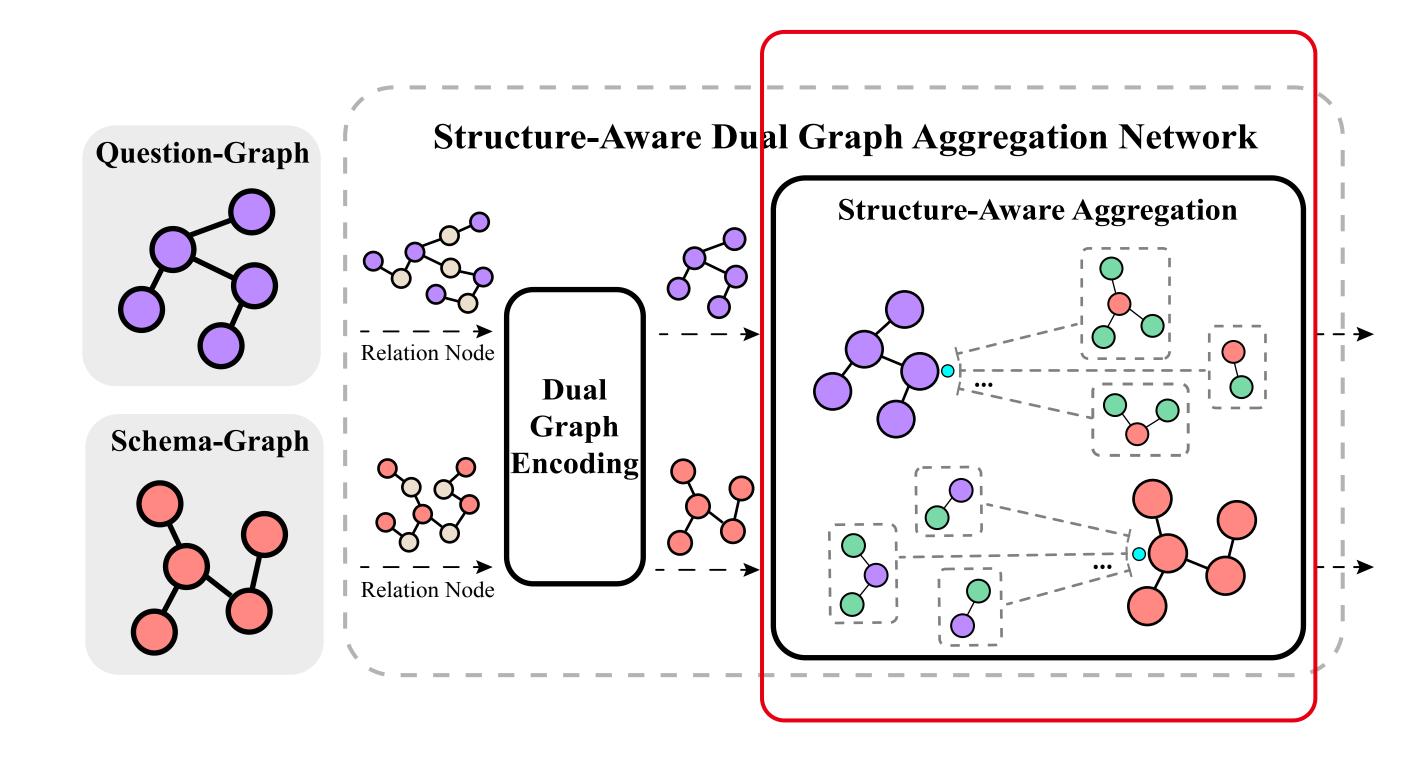
Schema-Graph





Structure-Aware Dual Graph Aggregation Network

- A. Dual-Graph Construction
- **B. Dual-Graph Encoding**
- **C. Structure-Aware Aggregation**
 - C.1 Global Graph Linking
 - C.2 Local Graph Linking
 - C.3 Dual-Graph Aggregation Mechanism



C. Structure-Aware Aggregation

Aggregation to update **Query-Graph** \mathcal{G}_q :

- Given Query-Graph \mathcal{G}_q and Key-Graph \mathcal{G}_k , we define the Structure-Aware Graph
 - $\mathcal{G}_{q}^{Aggr} = \operatorname{GraphAggr}(\mathcal{G}_{q}, \mathcal{G}_{k})$

C. Structure-Aware Aggregation

Aggregation to update Query-Graph \mathcal{G}_q :

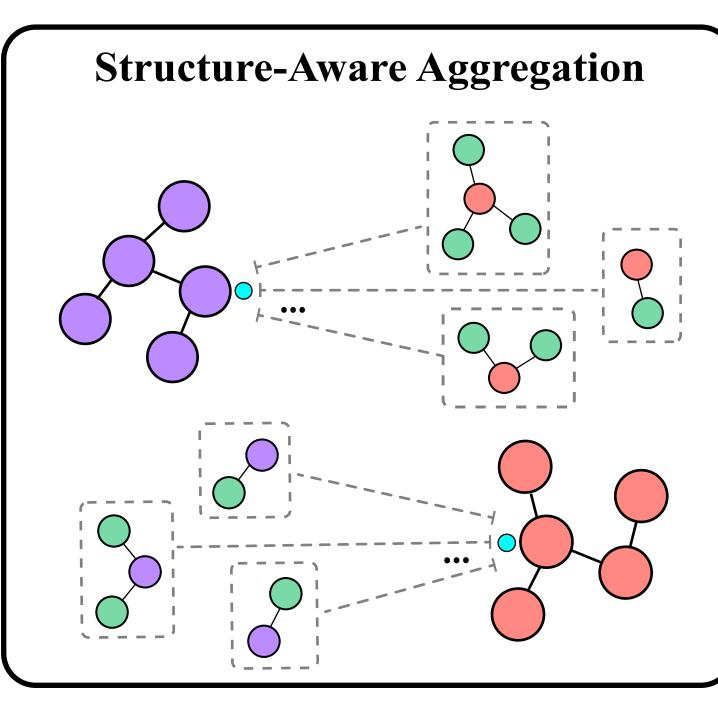
Update Question-Graph \mathcal{G}_Q :

 $\mathcal{G}_Q^{Aggr} = \operatorname{GraphAggr}(\mathcal{G}_Q, \mathcal{G}_S)$

Update Schema-Graph \mathcal{G}_S :

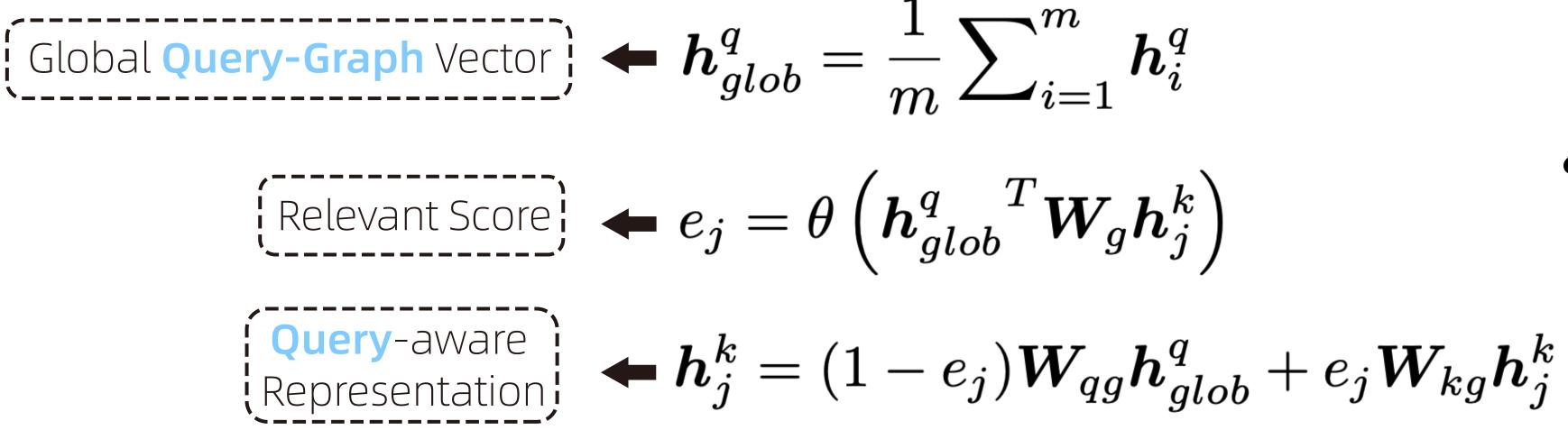
 ${\cal G}^{Aggr}_{\scriptscriptstyle C}$ $= \operatorname{GraphAggr}(\mathcal{G}_S, \mathcal{G}_Q)$

- Given Query-Graph \mathcal{G}_q and Key-Graph \mathcal{G}_k , we define the Structure-Aware Graph
 - $\mathcal{G}_a^{Aggr} = \operatorname{GraphAggr}(\mathcal{G}_q, \mathcal{G}_k)$

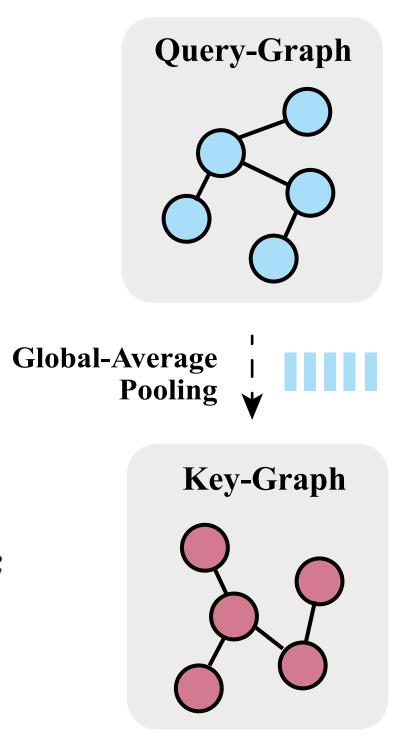


C. Structure-Aware Aggregation Given Query-Graph \mathcal{G}_q and Key-Graph \mathcal{G}_k :

In the beginning,

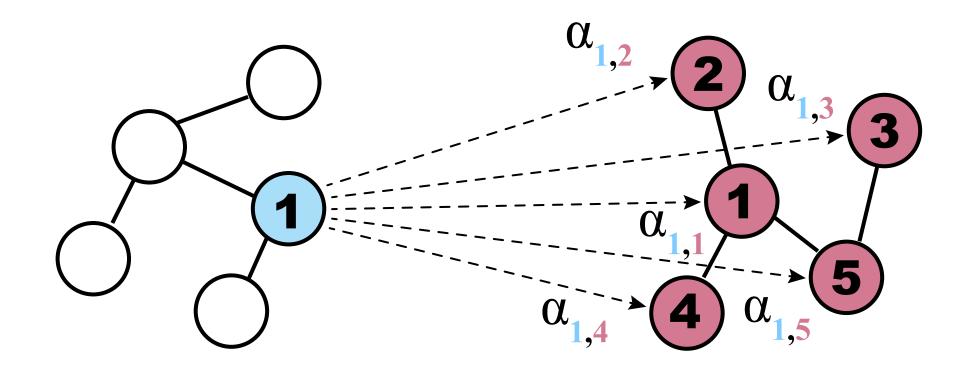


 $\mathcal{G}_q = \{ \boldsymbol{h}_i^q \}_{i=1}^m \qquad \mathcal{G}_k = \{ \boldsymbol{h}_i^k \}_{i=1}^n$



C.1 Global Graph Linking

Key-Graph, we calculate the **global attention score**:



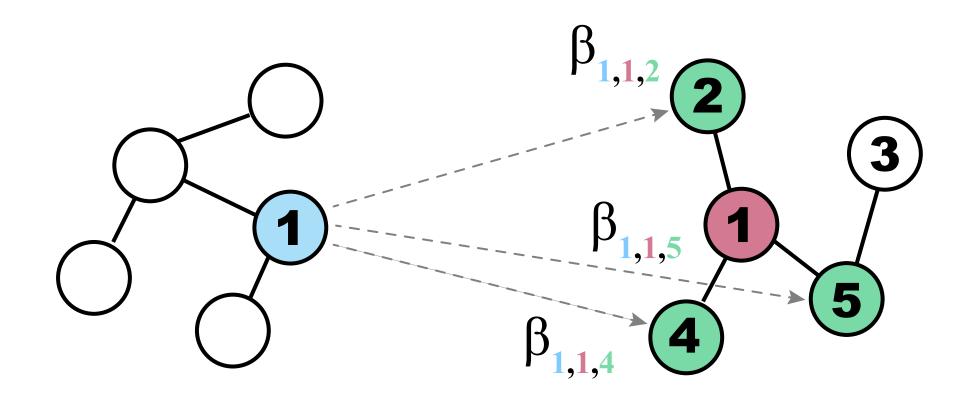
(e.g., 1st node in **Query-Graph**)

To learn the linking between each query node and the global structure of the

$$\left\{\begin{array}{l} \text{Learned Relation Feature}\\ \mathbf{s}_{i,j} = \sigma \left(\boldsymbol{h}_{i}^{q} \boldsymbol{W}_{q} \left(\boldsymbol{h}_{j}^{k} + \boldsymbol{R}_{ij}^{E} \right)^{T} \right) \\ \alpha_{i,j} = \text{softmax}_{j} \left\{ s_{i,j} \right\} \end{array}\right)$$

C.2 Local Graph Linking

nodes of the **key** node cross dual-graph:



(e.g., 1st node in Query-Graph and 1st node in **Key-Graph**)

In this phase, the query node will calculate the local attention score with the neighbor

$$\left[\begin{array}{c} \text{Learned Relation Feature} \end{array}\right]$$

$$o_{i,j,t} = \sigma \left(\boldsymbol{h}_{i}^{q} \boldsymbol{W}_{nq} \left(\boldsymbol{h}_{t}^{k} + \boldsymbol{R}_{it}^{E} \right)^{T} \right)$$

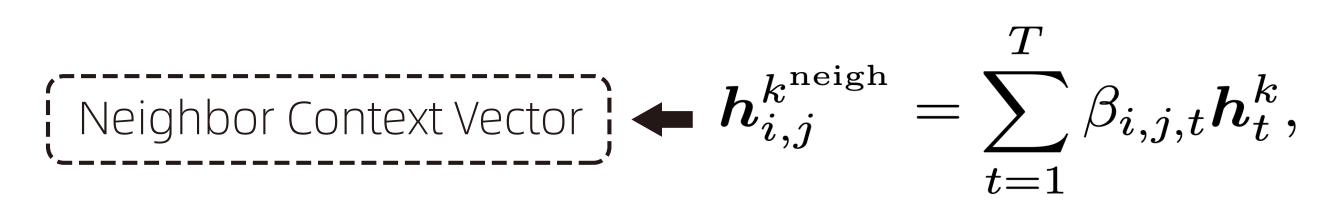
$$\beta_{i,j,t} = \text{softmax}_{t} \left\{ o_{i,j,t} \right\} \left(t \in \mathcal{N}_{j} \right)$$

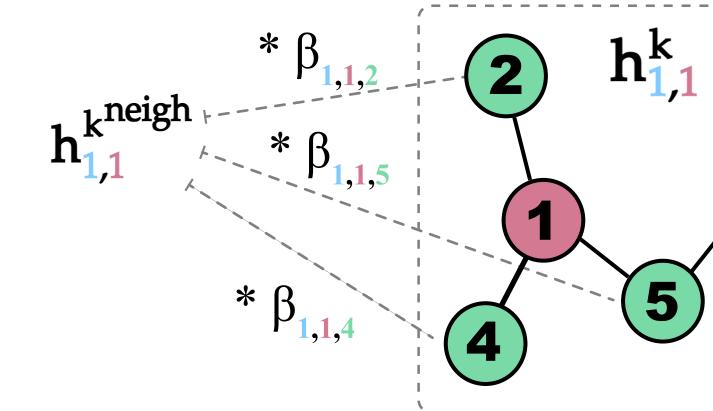
$$\downarrow$$

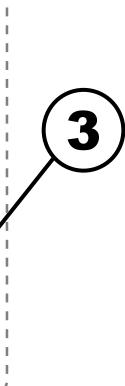
$$\left[\begin{array}{c} \text{Neighbors of} \\ \text{j-th Key Node} \end{array}\right]$$

C.3 Dual-Graph Aggregation Mechanism

Aggregate the **neighbor** information with the **local attention score**:







C.3 Dual-Graph Aggregation Mechanism

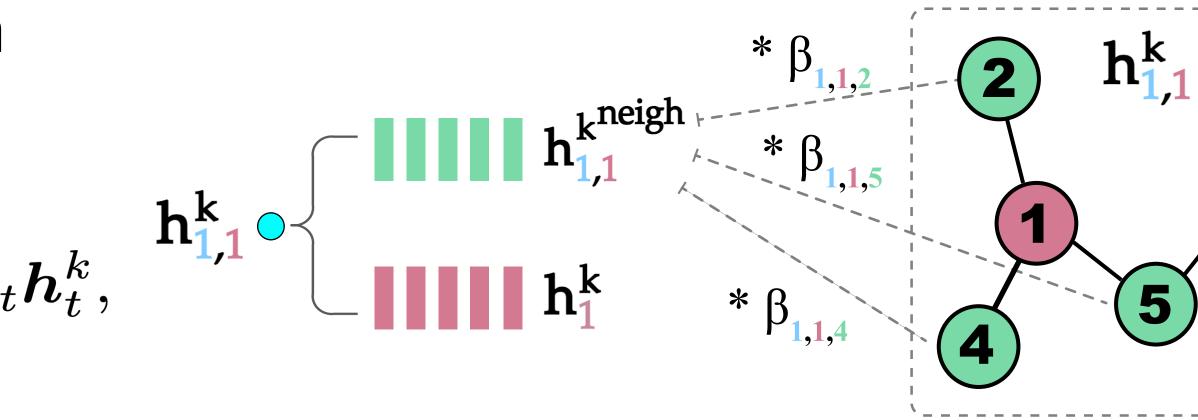
Aggregate the **neighbor** information with the local attention score:

Neighbor Context Vector $\mathbf{h}_{i,j}^{k^{\mathrm{neigh}}} = \sum_{t=1}^{T} \beta_{i,j,t} \mathbf{h}_{t}^{k}, \mathbf{h}_{1,1}^{k} \mathbf{h}_{1}^{k} \mathbf{h}_{1}^{k} \mathbf{h}_{1}^{k}$

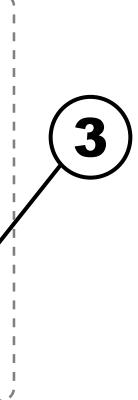
Apply a **gate** function to extract essential features among the key node self and the **neighbor** information:

 $oldsymbol{h}_{i\ i}^{k^{ ext{self}}}$

 $gate_{i}$



$$egin{aligned} &= oldsymbol{h}_{j}^{k} \ &= heta \left(oldsymbol{W}_{ng}\left[oldsymbol{h}_{i,j}^{k^{ ext{self}}};oldsymbol{h}_{i,j}^{k^{ ext{neigh}}}
ight]
ight) \ &= (1 - ext{gate}_{i,j}) *oldsymbol{h}_{i,j}^{k^{ ext{self}}} + ext{gate}_{i,j} *oldsymbol{h}_{i,j}^{k^{ ext{neigh}}} \end{aligned}$$

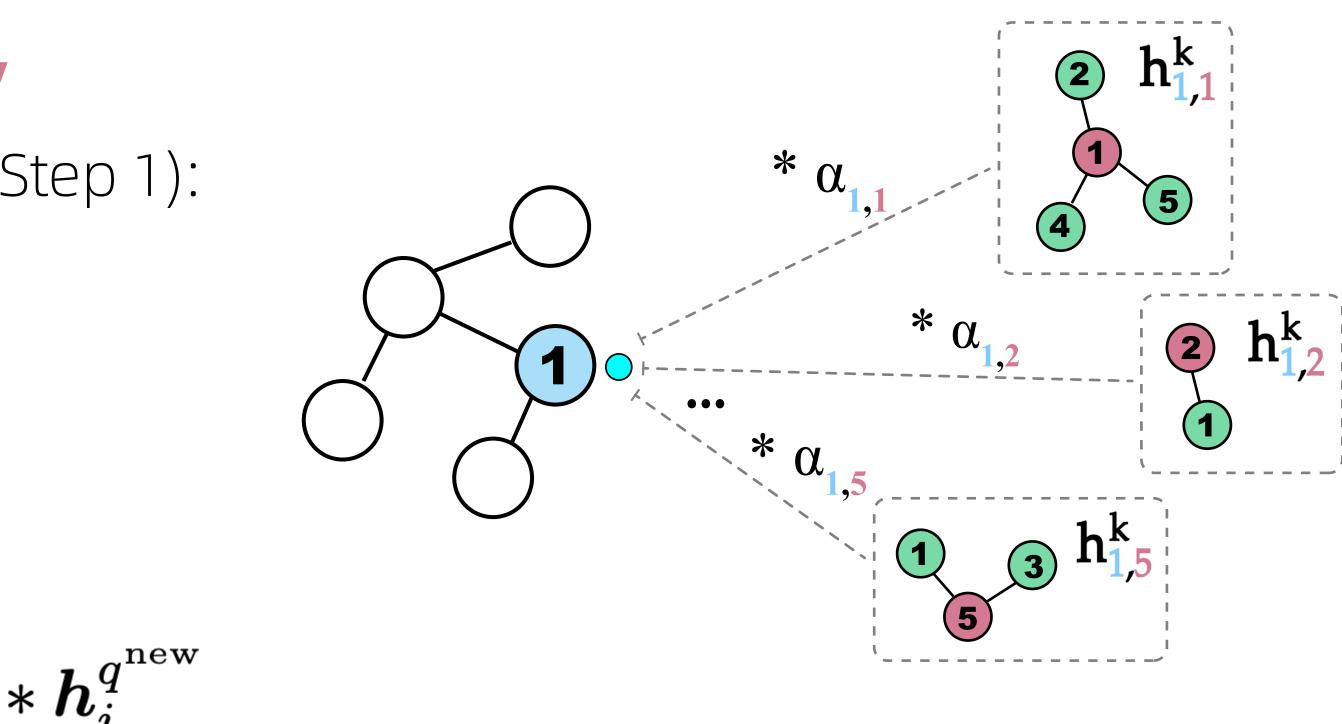


C.3 Dual-Graph Aggregation Mechanism

Finally, each **query** node aggregates the structure-aware information from all **key** nodes with the **global attention score** (Step 1):

$$egin{aligned} &m{h}_{i}^{q^{ ext{new}}} = \sum_{j=1}^{n} lpha_{i,j} \left(m{h}_{i,j}^{k} + m{R}_{ij}^{E}
ight) \ & ext{gate}_{i} = heta \left(m{W}_{ ext{gate}} \left[m{h}_{i}^{q};m{h}_{i}^{q^{ ext{new}}}
ight]
ight) \ &m{h}_{i}^{q^{ ext{Aggr}}} = (1 - ext{gate}_{i}) *m{h}_{i}^{q} + ext{gate}_{i} = (1 - ext{gate}_{i}) *m{h}_{i}^{q} + ext{gate}_{i}) *m{h}_{i}^{q} + ext{gate}_{i} = (1 - ext$$

We can obtain the final **query** node representation with the structure-aware information of the **Key-Graph**.



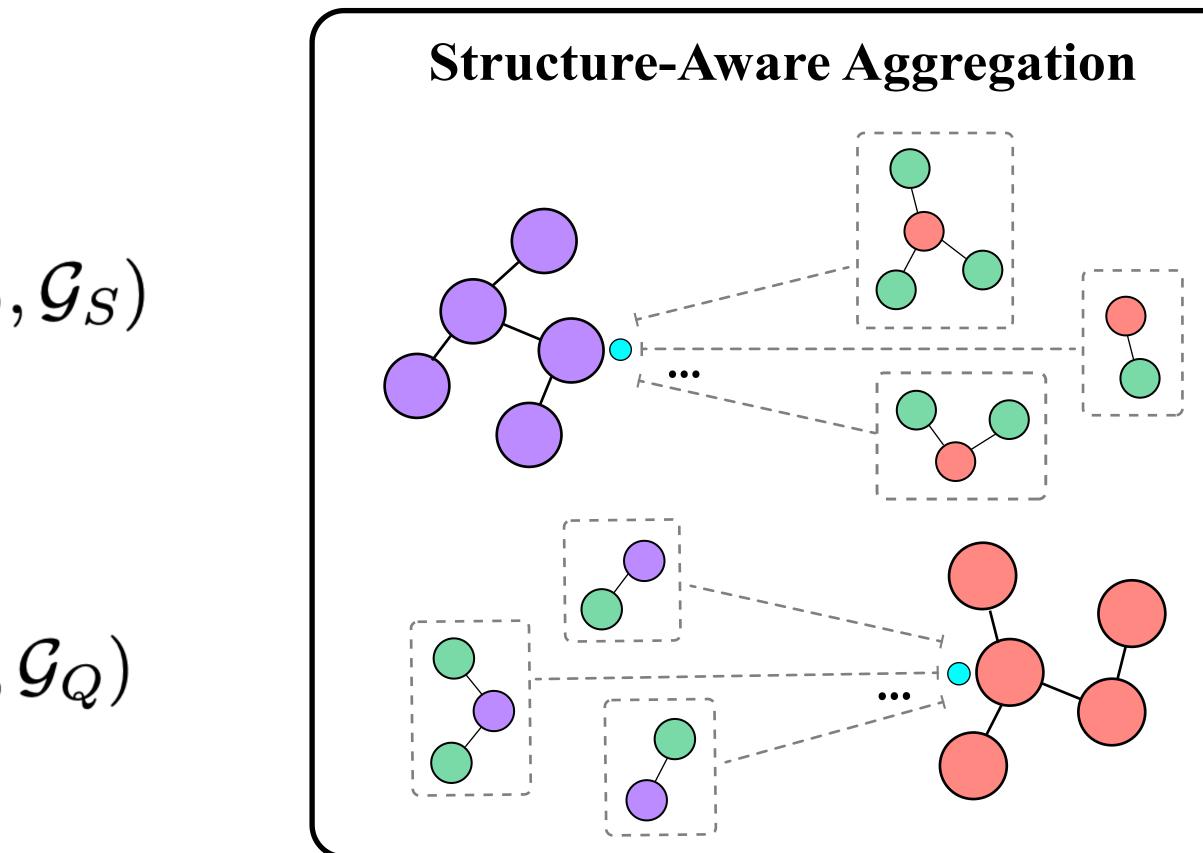
C. Structure-Aware Aggregation

Update Question-Graph \mathcal{G}_Q :

$$\mathcal{G}_Q^{Aggr} = \operatorname{GraphAggr}(\mathcal{G}_Q)$$

Update Schema-Graph \mathcal{G}_S :

$$\mathcal{G}_S^{Aggr} = \operatorname{GraphAggr}(\mathcal{G}_S,$$



Learn the question-schema linking on **Local Structure Level**, instead of on node-level.

Experiments: Spider Datasets

- The most challenging benchmark on **cross-domain** Text-to-SQL.
- Contain 9 traditional specific-domain dataset, e.g., ATIS, GeoQuery.
- **Unseen** databases in the test set.
- official **non-released** test set.

- Participants must submit the models (only two) to obtain the test accuracy for the

Experiments: Results

At the time of writing, our best model has achieved the **3rd** on the overall leaderboard.

Approach	Dev	Test	Approach	Dev	Test
GNN [3]	40.7	39.4	RATSQL-HPFT + BERT-large	69.3	64.4
Global-GNN [2]	52.7	47.4	YCSQL + BERT-large	-	65.3
IRNet v2 [11]	55.4	48.5	DuoRAT + BERT-large [24]	69.4	65.4
RATSQL [27]	62.7	57.2	RATSQL + BERT-large [27]	69.7	65.6
SADGA	65.6	-	SADGA + BERT-large	71.6	66.7
EditSQL + BERT-base [36]	57.6	53.4	ShadowGNN + RoBERTa [5]	72.3	66.1
GNN + Bertrand-DR [15]	57.9	54.6	RATSQL + STRUG [9]	72.6	68.4
IRNet v2 + BERT-base [11]	63.9	55.0	RATSQL + GraPPa [34]	73.4	69.6
RATSQL + BERT-base [27]	65.8	-	RATSQL + GAP [25]	71.8	69.7
SADGA + BERT-base	69.0	-	SADGA + GAP	73.1	70.1

Rank	Model	Dev	Tes
1	DT-Fixup SQL-SP + RoBERTa (DB content used)	75.0	70.
Nov 19, 2020	Borealis Al		
	(Xu et al., ACL'21)		
2	RAT-SQL + GraPPa + Adv (DB content used)	75.5	70.
Nov 19, 2020	Anonymous		
3	SADGA + GAP (DB content used)	73.1	70.
Nov 19, 2020	Anonymous		
4	RATSQL + GraPPa + GP (DB content used)	72.8	69.
Dec 25, 2020	OCFT Gamma Big Data Lab		
	(Zhao et al.,'21)		
4	RATSQL + GAP (DB content used)	71.8	69.
Sep 08, 2020	University of Waterloo & AWS AI Labs		
	(Shi et al., AAAI'21) code		
4	RATSQL + GraPPa (DB content used)	73.4	69.
Aug 18, 2020	Yale & Salesforce Research		
	(Yu et al., ICLR'21) code		
4	SmBoP + GraPPa (DB content used)	74.7	69.
Mar 10, 2021	Tel-Aviv University & Allen Institute for Al		
	(Rubin and Berant, NAACL'21) code		
7	RAT-SQL + STRUG (DB content used)	72.6	68.
Nov 20, 2020	Microsoft Research & OSU		
	(Deng et al., NAACL '21)		

Experiments: Ablation Study

Model

SADGA

- w/o Local Graph Linking
- w/o Structure-Aware Aggregation
- w/o GraphAggr($\mathcal{G}_S, \mathcal{G}_Q$)
- w/o GraphAggr($\mathcal{G}_Q, \mathcal{G}_S$)
- Cross-Graph Linking in Dual-Graph Encoding
- w/o Relation Node (replace with edge types)
- w/o Global Pooling (Eq. 3 and Eq. 4)
- w/o Aggregation Gate (Eq. 8, gate_{*i*, *j*} = 0.5)
- w/o Relation Feature in Aggregation (\mathbf{R}_{ij}^E)

SADGA + BERT-base

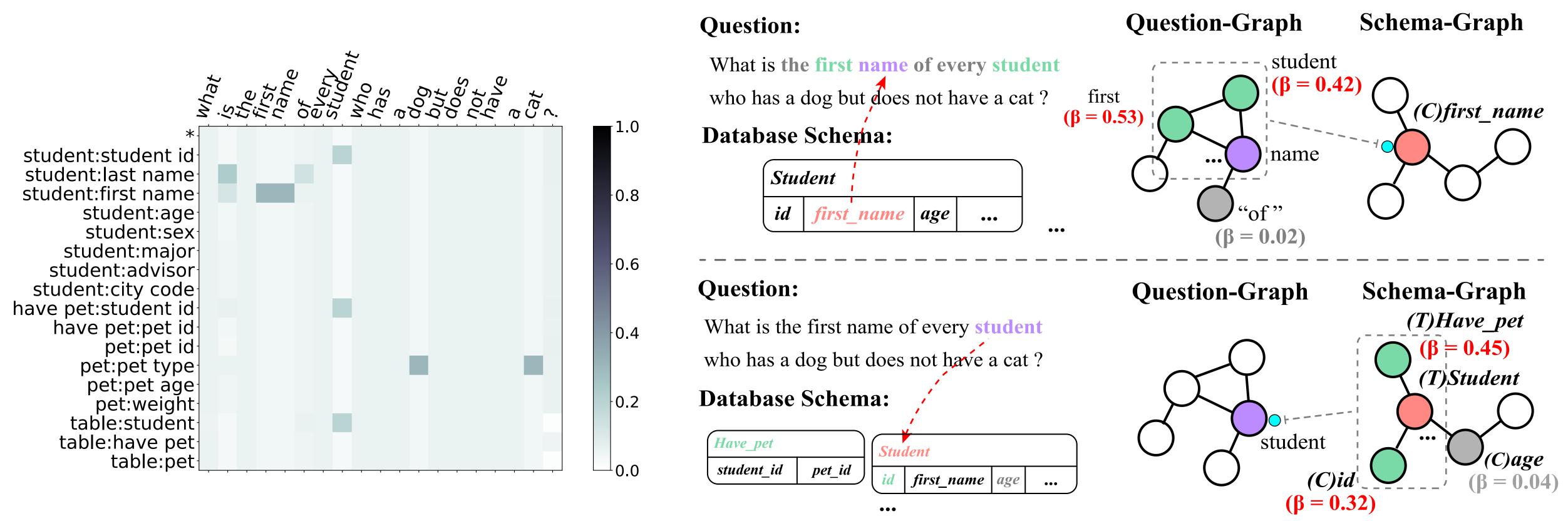
w/o Local Graph Linking

w/o Structure-Aware Aggregation

Easy	Medium	Hard	Extra Hard	All	
80.6	67.7	57.6	45.8	65.6	
83.5(+2.9)	64.8(-2.9)	53.4(-4.2)	38.6(-7.2)	63.2(-2.4)	
83.5(+2.9)	62.1(-5.6)	55.2(-2.4)	42.2(-3.6)	62.9(-2.7)	
83.1(+2.5)	64.1(-3.6)	52.3(-5.3)	40.4(-5.4)	62.9(-2.7)	
79.0(-1.6)	63.7(-4.0)	50.0(-7.6)	41.6(-4.2)	61.5(-4.1)	
82.3(+1.7)	63.7(-4.0)	51.1(-6.5)	45.2(-0.6)	63.1(-2.5)	
79.4(-1.2)	63.5(-4.2)	54.6(-3.0)	40.4(-5.4)	62.1(-3.5)	
82.7(+2.1)	64.3(-3.4)	54.0(-3.6)	41.6(-4.2)	63.5(-2.1)	
81.9(+1.3)	60.1(-7.6)	54.6(-3.0)	40.4(-5.4)	61.2(-4.4)	
79.4(-1.2)	64.3(-3.4)	54.6(-3.0)	41.6(-4.2)	62.7(-2.9)	
85.9	71.7	58.0	47.6	69.0	
85.5(-0.4)	69.5(-2.2)	54.0(-4.0)	42.8(-4.8)	66.4(-2.6)	
85.9(-0)	68.8(-2.9)	57.5(-0.5)	41.0(-6.6)	66.5(-2.5)	

Experiments: Case Study

"What is the first name of every student who has a dog but does not have a cat?"



Alignment between question words and tables/columns on **Global Graph Linking**

Analysis on Local Graph Linking

Experiments: Case Study

"What is the first name of every student who has a dog but does not have a cat?"

Question:

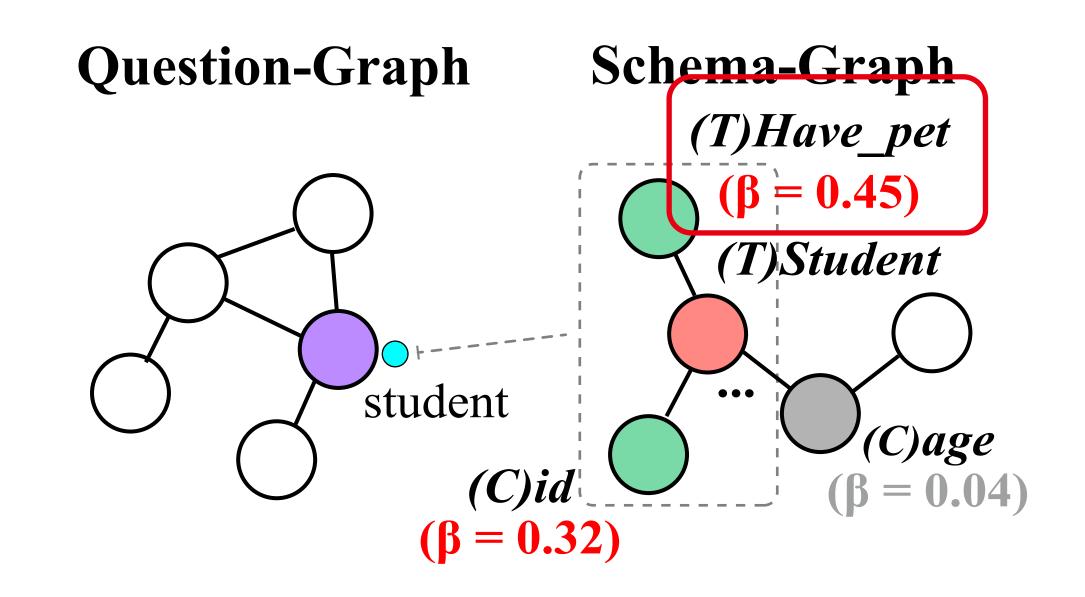
What is the first name of every **student** who has a dog but does not have a cat?

Database Schema:

Have_pet		Stu	dent		
student_id	pet_id	id	first_name	age	•••
			J		

 $\bullet \bullet \bullet$

Analysis on Local Graph Linking



Conclusion

- Text-to-SQL task.
- **SADGA:** (i) a unified graph encoding for both question and schema, information of dual graph.
- Detailed experiments and case studies show the effectiveness of SADGA.
- We will extend SADGA to other heterogeneous graph tasks.

A Structure-Aware Dual Graph Aggregation Network (SADGA) for cross-domain

(ii) a graph aggregation approach to consider the **global** and **local** structure

Thanks for Listening!

Our code is available at: https://github.com/DMIRLAB-Group/SADGA

Welcome to QA for questions!