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1 Types of Neural Solver for VRPs: Construction / Improvement
Different from construction solvers, improvement solvers need to encode VRP solutions properly.
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2 Although Transformer has been shown effective for processing sequence data, 
   its positional encoding (PE) may not be optimal for encoding VRP solutions.

Node Features: 
Coordinates, demand, etc.

Node Positional Features: 
Position of node in the 

solution sequence

3. For Encoding Linear 
Sequences Only

(Limitation: cannot capture the 
circularity and symmetry of VRP 

solution, significantly hurt 
generalization performance)

1. Embedding Fusion through 
an Addition Operator

(Limitation: mixed correlations 
can bring unreasonable noises and 

random biases to the encoder) 2. Learning a Unified Set of 
Embeddings

(Limitation: may cause 
disharmony or disturbance for 

VRP tasks)
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 3. Our Proposed Method and Main Contribution
a) Dual-Aspect Representation - Better Transformer-style encoder for VRPs

● Learning Two Sets of Embeddings
● DAC Encoder

○ DAC-Att
○ Cross-Aspect Referential Attention
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 3. Our Proposed Method and Main Contribution
b) Cyclic Positional Encoding

● We enable Transformer for encoding cyclic sequences
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 3. Our Proposed Method and Main Contribution
b) Cyclic Positional Encoding -> Better Generalization on synthetic and benchmark instances

6



 3. Our Proposed Method and Main Contribution
c) Curriculum Learning strategy - Better RL algorithm for Neural Combinatorial Optimization

Training with n-step PPO and a Curriculum Learning Strategy:

● Our CL strategy:
○ gradually prescribes higher-quality solutions as the initial states for training.

● Benefits: 
○ Better sample efficiency while 

reducing the variance of training
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 4. Results on TSP and CVRP
     Our DACT advances the current SOTA on learning purely data-driven improvement VRP solver.
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