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Motivation
1

s =

a = Q(s, a) = φ(s, a)>θ

φ(s, a)

Matteo Papini



Contributions
2

Characterization of good representations for RL in linear MDPs

Constant regret with good representations (LSVI-UCB, ELEANOR)

Online representation selection (LSVI-LEADER)
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Finite-Horizon Markov Decision Processes (MDPs)
3

(S,A, (rh)Hh=1, (ph)Hh=1, µ)

Finite horizon H

Time-inhomogeneous

Finite actions

Possibly in�nite states

Matteo Papini



Reinforcement Learning in Finite-Horizon MDPs
4

Policy π = (πh)Hh=1, πh : S → A (deterministic, time-dependent)

Value function

Qπh(s, a) = rh(s, a) + Es′∼ph(s,a)

[
Qπh+1(s′, πh+1(s′))

]
Optimal policy

π? = arg max
π

Qπ Q? = Qπ
?

Assumption: unique optimal action∣∣∣ arg max
a

{
Q?h(s, a)

}∣∣∣ = 1
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Linear MDPs
5

Linear representation φ : S ×A → Rd, d << |S|

s =

a = Q(s, a)

φ(s, a)

θ

Q?(s, a) = φ(s, a)>θ? Not enough! [Weisz et al., 2021]

Matteo Papini



Low-Rank MDPs
[Yang and Wang, 2019, Jin et al., 2020]

6

Low-rank MDP

For each h ∈ [H] there are νh ∈ Rd and µh : S → Rd such that

rh(s, a) = φh(s, a)>νh ph(s′|s, a) = φh(s, a)>µh(s′)

Implies linearly realizable Q-function [Jin et al., 2020]: for each π there is θπ such that

Qπh(s, a) = φh(s, a)>θπh
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Bellman Closure [Zanette et al., 2020]

7

Bellman-Closure MDP

For all θ there is θ′ such that for all s, a, h:

φh(s, a)>θ′ = rh + Es′∼ph(s,a)

[
max
a′

φh+1(s′, a′)>θ

]

Weaker than low-rank

Linearly realizable optimal value function:

Q?h(s, a) = φh(s, a)>θ?h
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Regret Bounds
8

V πh (s) = max
a

Qπh(s, a)

R(K) =

K∑
k=1

V ?1 (sk1)− V π
k

1 (sk1)

Assumption: positive suboptimality gaps

∆h(s, a) = V ?h (s)−Q?h(s, a)

∆min = min
s,h,a6=π?

h(s)
∆h(s, a) > 0

Algorithm
(setting)

Minimax
Problem-Dependent

Logarithmic

ELEANOR1

(Bellman Closure)

Õ(
√
d2H3T )

[Zanette et al., 2020]
N/A

Can we

do better?

LSVI-UCB
(low-rank MDPs)

Õ(
√
d3H3T )

[Jin et al., 2020]

O

(
d3H5

∆min
log2(T )

)
[He et al., 2020]

Can we

do better?

Lower Bound
Ω(

√
d2H2T )

[Zhou et al., 2020, Remark 5.8]

Ω

(
dH

∆min

)
[He et al., 2020]

1Computationally intractable!
Matteo Papini
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The UNISOFT Property (UNIversally Spanning Optimal FeaTures)
Inspired by Hao et al. [2020], Papini et al. [2021]

9

span
{
φ?h(s) | s ∈ supp(ρ?h)

}
= span

{
φh(s, π(s)) | s ∈ supp( ρπh ) for some π

}

A representation is UNISOFT if optimal features span the whole feature space

A su�cient condition is (necessary if features span Rd):

λ+ = min
h∈[H]

λmin

(
Es∼ρ?h [φ?h(s)φ?h(s)>]

)
> 0

In general we can consider the minimum nonzero eigenvalue (larger is better)

‖φ(s, a)‖ ≤ 1 =⇒ λ+ ≤ 1

Optimal features
φ?h(s) = φh(s, π?h(s))

state visitation prob-
ability under policy π
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UNISOFT is necessary for Constant Regret
10

Necessity of UNISOFT

Consider any MDP with linear rewards:

rh(s, a) = φh(s, a)>νh

If φ is not UNISOFT, no consistent2 algorithm can achieve constant regret

Y This applies to low-rank, Bellman closure, and even linear-mixture MDPs (with

unknown linear rewards) [Jia et al., 2020, Ayoub et al., 2020, Zhou et al., 2020]

2We only ask the algorithm to su�er sublinear regret for all alternative reward parameters
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UNISOFT is su�cient for Constant Regret
11

Regret of LSVI-UCB with UNISOFT

LSVI-UCB achieves CONSTANT regret in low-rank MDPs if and only if the representation

is UNISOFT. With probability 1− δ:

R(K) .
d3H5

∆min
log(dHτ/δ)

where τ .
H5d3

λ3
+∆2

is a constant independent of K

After τ interactions, the agent has learned the optimal policy

Matteo Papini



UNISOFT is su�cient for Constant Regret
12

Algorithm
(setting)

Minimax
Problem-Dependent

Logarithmic
Constant with UNISOFT

(this work)3

ELEANOR
(Bellman Closure)

Õ(
√
d2H3T )

[Zanette et al., 2020]
N/A Õ

(
d2H4

∆minλ
3/2
+

)
LSVI-UCB

(low-rank MDPs)

Õ(
√
d3H3T )

[Jin et al., 2020]

O

(
d3H5

∆min
log2(T )

)
[He et al., 2020]

Õ

(
d3H5

∆min

)
Lower Bound Ω(

√
d2H2T )

Ω

(
dH

∆min

)
[He et al., 2020]

N/A

ÿ After kA episodes, the agent A has learned the optimal policy

3Here Õ hides terms in d,H,∆min, λ+, δ, but not in T
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Representation Selection in Low-Rank MDPs
13

Typical approach: �nd an accurate representation in a realizable function class, usually

o�ine [Agarwal et al., 2020, Modi et al., 2021, Lu et al., 2021]

Our setting:

Agent is given N equivalent linear representations φ1, . . . , φN

Each φi inducing the same low-rank MDP (no misspeci�cation)

Possibly di�erent dimension

Goal: learn as if using the best candidate representation (possibly UNISOFT)
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LSVI-LEADER
14

At each episode k

For each representation j ∈ [N ], compute an optimistic estimate Q
k
j of Q? using

all past interaction data

Backward induction (h = H, . . . , 1): Y h
i = rhi + max

a
min
j
Q
k
j,h+1(sh+1

i , a)

Least Squares: θ̂kj,h = ( Λkj,h︸︷︷︸
design matrix4

)−1
k−1∑
i=1

φjh(shi , a
h
i ) Y h

i︸︷︷︸
target

Optimism: Q
k
j,h(s, a) = φjh(s, a)>θ̂kj,h + βk‖φjh‖(Λkj,h)−1︸ ︷︷ ︸

exploration bonus

Act greedily w.r.t. the tightest optimistic estimate

akh = arg max
a

min
j
Q
k
j,h(s, a)

4
Λ
k
j,h =

∑k

i=1
φ
j
h

(s
h
i , a

h
i )φ

j
h

(s
h
i , a

h
i )

>

Matteo Papini



LSVI-LEADER Achieves Constant Regret
15

Regret of LSVI-LEADER

Let R(K;φ) (an upper bound on) the regret that LSVI su�ers by using representation

φ. The regret of LSVI-LEADER with candidate representations φj , . . . , φN is

R(K) .
√
N min

φ∈Φ
R(K;φ)

where Φ is the set of HN representations obtained by combining the N candidates

across stages.

If one of the candidate representations is UNISOFT, LSVI-LEADER achieves

constant regret.

LSVI-LEADER can combine representations also across states and actions and

achieve constant regret under a weaker notion of UNISOFT
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Empirical Results
16
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Future Work
17

Improve the
√
N factor in LSVI-LEADER (logN for linear bandits)

Misspeci�ed representations

Representation learning for Deep RL

Multi-task RL [Lu et al., 2021]
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