Learnable Fourier Features for Multi-Dimensional Spatial Positional Encoding

Yang Li, Si Si, Gang Li, Cho-Jui Hsieh*, Samy Bengio

Google Research UCLA*

Neural Attentional Mechanisms

Attention weights
$a_{i}=\frac{\exp \left(f_{a t t}\left(q, k_{i}\right)\right)}{\sum_{j=1}^{|M|} \exp \left(f_{a t t}\left(q, k_{j}\right)\right)}$
Attention output

$$
O_{q}^{M}=\sum_{i=1}^{|M|} a_{i} v_{i}
$$

Items to attend

Neural Attentional Mechanisms

Attention weights

$$
a_{i}=\frac{\exp \left(f_{a t t}\left(q, k_{i}\right)\right)}{\sum_{j=1}^{|M|} \exp \left(f_{a t t}\left(q, k_{j}\right)\right)}
$$

Attention output

$$
O_{q}^{M}=\sum_{i=1}^{|M|} a_{i} v_{i}
$$

Items to attend

Why Positional Encoding?

Existing Positional Encoding Methods

- Learnable embedding for discrete positions

Existing Positional Encoding Methods

- Learnable embedding for discrete positions

Existing Positional Encoding Methods

- Learnable embedding for discrete positions

- Sinusoidal positional encoding

$$
P E(p, 2 d)=\sin \frac{p}{10000^{2 d / D}} \quad P E(p, 2 d+1)=\cos \frac{p}{10000^{2 d / D}}
$$

Existing Positional Encoding Methods

- Learnable embedding for discrete positions

- Sinusoidal positional encoding

$$
P E(p, 2 d)=\sin \frac{p}{10000^{2 d / D}} \quad P E(p, 2 d+1)=\cos \frac{p}{10000^{2 d / D}}
$$

Sinusoidal encoding for 2D positions by concatenation

Existing Positional Encoding Methods

- Learnable embedding for discrete positions

- Sinusoidal positional encoding

$$
P E(p, 2 d)=\sin \frac{p}{10000^{2 d / D}} \quad P E(p, 2 d+1)=\cos \frac{p}{10000^{2 d / D}}
$$

Sinusoidal encoding for 2D positions by concatenation Ideal similarity for L2 distances

Existing Positional Encoding Methods

- Learnable embedding for discrete positions
- Sinusoidal positional encoding
- Relative positional encoding

Shaw et al. NAACL 2018

Learnable Fourier Feature Positional Encoding

Design objectives

- Positions as continuous-valued vectors
- Including inductive bias such as L2 distances
- Learnable \& composable

Learnable Fourier Feature Positional Encoding

Given an M-dimensional position: $x \in R^{M}$
Acquire D-dimensional Fourier features: $r_{x}=\frac{1}{\sqrt{D}}\left[\cos x W_{r}^{T} \| \sin x W_{r}^{T}\right]$
Trainable parameters: $W_{r} \in R^{\frac{D}{2} \times M}$

Learnable Fourier Feature Positional Encoding

Given an M-dimensional position: $x \in R^{M}$
Acquire D-dimensional Fourier features: $r_{x}=\frac{1}{\sqrt{D}}\left[\cos x W_{r}^{T} \| \sin x W_{r}^{T}\right]$
Trainable parameters: $W_{r} \in R^{\frac{D}{2} \times M}$
Shift invariance: $r_{x} \cdot r_{y}=\frac{1}{D} \operatorname{sum}\left(\cos \left((x-y) W_{r}^{T}\right)\right):=h_{W_{r}}(x-y)$

Learnable Fourier Feature Positional Encoding

Given an M-dimensional position: $x \in R^{M}$
Acquire D-dimensional Fourier features: $r_{x}=\frac{1}{\sqrt{D}}\left[\cos x W_{r}^{T} \| \sin x W_{r}^{T}\right]$
Trainable parameters: $W_{r} \in R^{\frac{D}{2} \times M}$
Shift invariance: $r_{x} \cdot r_{y}=\frac{1}{D} \operatorname{sum}\left(\cos \left((x-y) W_{r}^{T}\right)\right):=h_{W_{r}}(x-y)$
Approximate Gaussian kernel: $W_{r} \sim \mathcal{N}\left(0, \gamma^{-2}\right) \quad r_{x} \cdot r_{y} \approx \exp \left(-\frac{\|x-y\|^{2}}{\gamma^{2}}\right)$

Learnable Fourier Feature Positional Encoding

Given an M-dimensional position: $x \in R^{M}$
Acquire D-dimensional Fourier features: $r_{x}=\frac{1}{\sqrt{D}}\left[\cos x W_{r}^{T} \| \sin x W_{r}^{T}\right]$
MLP Modulator: $\quad P E_{x}=\phi\left(r_{x}, \theta\right) W_{p}$

Learnable Fourier Feature Positional Encoding

Given an M-dimensional position: $x \in R^{M}$
Acquire D-dimensional Fourier features: $r_{x}=\frac{1}{\sqrt{D}}\left[\cos x W_{r}^{T} \| \sin x W_{r}^{T}\right]$
MLP Modulator: $\quad P E_{x}=\phi\left(r_{x}, \theta\right) W_{p}$

Composability:

One group
[(top, left, bottom, right)]
Two groups
[(top, left), (bottom, right)]

Experiments

- Image generation
- Object detection
- Image classification
- Widget captioning

Image Generation

Benchmark:

- Reformer on ImageNet64 [Kitaev et al. ICLR 2020]
- Images with 64x64 unique 2D pixel positions

Object Detection

Benchmark:

- DETR on MS COCO 2017 [Carion et al. ECCV 2020]
- Image feature maps with 42×42 unique 2D positions

Method	$A P$	$A P_{50}$	$A P_{75}$	$A P_{\text {small }}$	$A P_{\text {medium }}$	$A P_{\text {large }}$
Sine-2D	40.1	60.4	42.6	18.5	43.6	58.8
Embed-2D	39.3	59.8	41.4	18.7	42.5	57.5
MLP	40.0	60.3	42.2	18.6	43.7	58.1
Learnable-Fourier+MLP	$\mathbf{4 0 . 2}$	$\mathbf{6 0 . 7}$	$\mathbf{4 2 . 7}$	$\mathbf{1 8 . 8}$	$\mathbf{4 3 . 8}$	$\mathbf{5 9 . 1}$

Generalization on unseen image sizes

Method	$A P$	$A P_{50}$	$A P_{75}$	$A P_{\text {small }}$	$A P_{\text {medium }}$	$A P_{\text {large }}$
Sine-2D	38.9	59.6	40.9	17.5	42.5	57.5
Embed-2D	36.6	58.2	37.7	15.9	40.0	55.3
MLP	38.6	59.5	40.3	17.1	42.1	57.1
Learnable-Fourier+MLP	$\mathbf{3 9 . 5}$	$\mathbf{6 0 . 0}$	$\mathbf{4 1 . 6}$	$\mathbf{1 8 . 9}$	$\mathbf{4 3 . 0}$	$\mathbf{5 8 . 0}$

Image Classification

Benchmark:

- ViT-B/16 on ImageNet and JFT(300M) [Dosovitskiy et al. ICLR 2021]
- Image feature maps with 14×14 unique 2D positions

Trained \& validated on ImageNet
Embed-1D: Precision@1=73.6\%
Learnable-Fourier+MLP: Precision@1=74.5\%
Pretrained on JFT and 5-Shot Learning on ImageNet
Embed-1D: 64.206\%
Learnable-Fourier+MLP: 74.732\%

Widget Captioning

Benchmark:

- Widget captioning [Li et al. EMNLP 2020]
- Sparse spatial UI layouts with 100x100x100x100 4D positions

Positional Embedding	BLEU-1	BLEU-2	ROUGE	CIDEr	METOER	SPICE
SOTA [20]	44.9	32.2	44.7	97.0	31.7	17.6
Embed-4D	45.2	31.9	45.0	97.0	31.7	17.3
MLP	34.0	23.5	33.7	70.3	23.7	10.2
Sine-4D	44.9	31.9	43.9	94.9	31.0	16.7
Learnable-Fourier-2/2	44.9	31.6	44.3	95.3	31.6	17.7
Fixed-Fourier+MLP-1/4	45.0	32.1	44.2	95.4	31.2	17.1
Fixed-Fourier+MLP-2/2	46.1	32.5	45.8	100.2	32.5	18.4
Fixed-Fourier+MLP-4/1	45.5	32.1	45.1	97.2	31.7	17.6
Learnable-Fourier+MLP-1/4	45.6	32.7	45.2	99.1	32.2	17.1
Learnable-Fourier+MLP-2/2	46.1	32.7	45.9	98.0	$\mathbf{3 2 . 6}$	$\mathbf{1 7 . 9}$
Learnable-Fourier+MLP-4/1	$\mathbf{4 6 . 8}$	$\mathbf{3 3 . 4}$	$\mathbf{4 6 . 1}$	$\mathbf{1 0 0 . 7}$	32.4	17.8

Performance on Unseen Positions in Widget Captioning

Positional Embedding	Seen CIDEr	Unseen CIDEr
Embed-4D	$\mathbf{1 2 3 . 4}$	78.5
Sine-4D	121.3	76.4
Learnable-Fourier+MLP-4/1	$\mathbf{1 2 3 . 4}$	$\mathbf{8 2 . 2}$

Conclusions

- A novel approach for positional encoding based on learnable Fourier features.
- Positions as continuous-valued vectors
- Bringing in inductive bias such as L2 distances
- Learnable \& composable
- Extensive experiments based on a range of multi-dimensional spatial tasks.
- Image generation
- Object detection
- Image classification
- Widget captioning

Learnable Fourier Features for Multi-Dimensional Spatial Positional Encoding

Yang Li, Si Si, Gang Li, Cho-Jui Hsieh*, Samy Bengio

Google Research UCLA*

