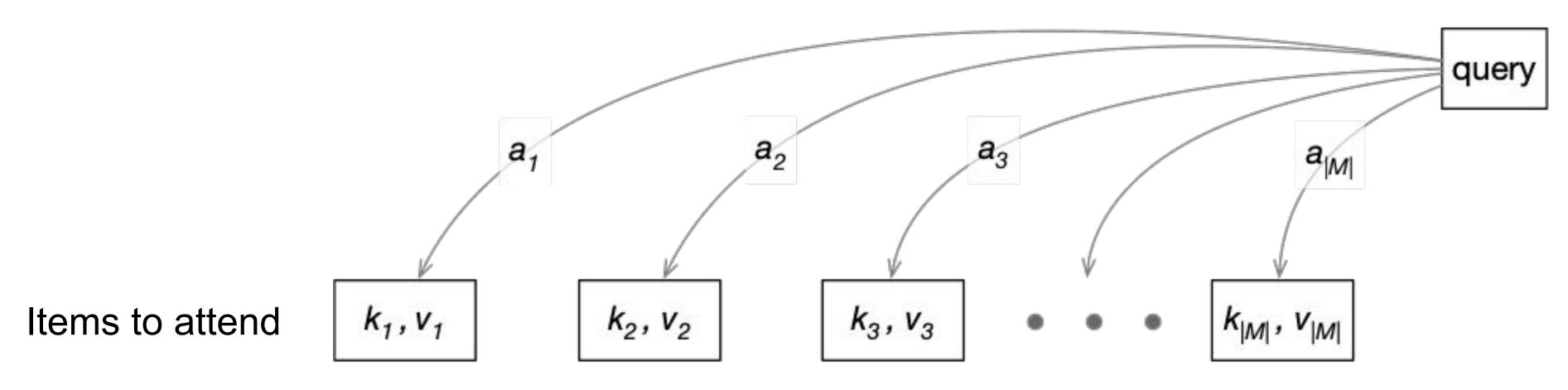
Learnable Fourier Features for Multi-Dimensional Spatial Positional Encoding

Yang Li, Si Si, Gang Li, Cho-Jui Hsieh*, Samy Bengio

Neural Attentional Mechanisms

Attention weights

$$a_i = \frac{\exp(f_{att}(q, k_i))}{\sum_{j=1}^{|M|} \exp(f_{att}(q, k_j))}$$



Attention output

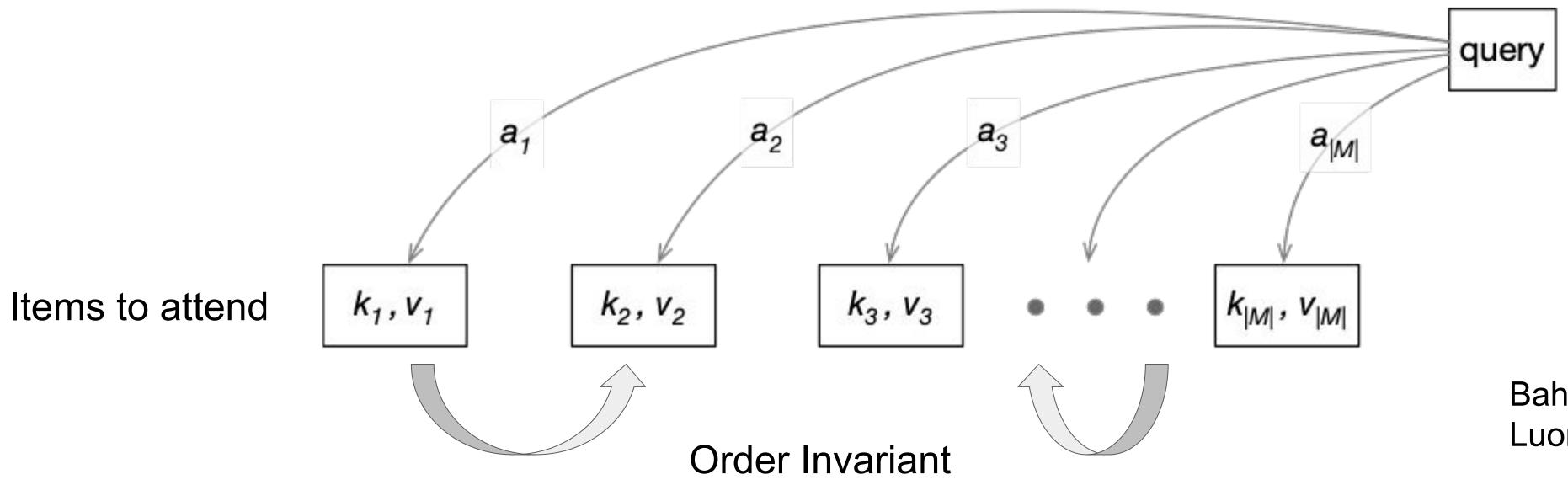
$$O_q^M = \sum_{i=1}^{|M|} a_i v_i$$

Bahdanau et al., ICLR 2015 Luong et al., ACL 2015

Neural Attentional Mechanisms

Attention weights

$$a_i = \frac{\exp(f_{att}(q, k_i))}{\sum_{j=1}^{|M|} \exp(f_{att}(q, k_j))}$$

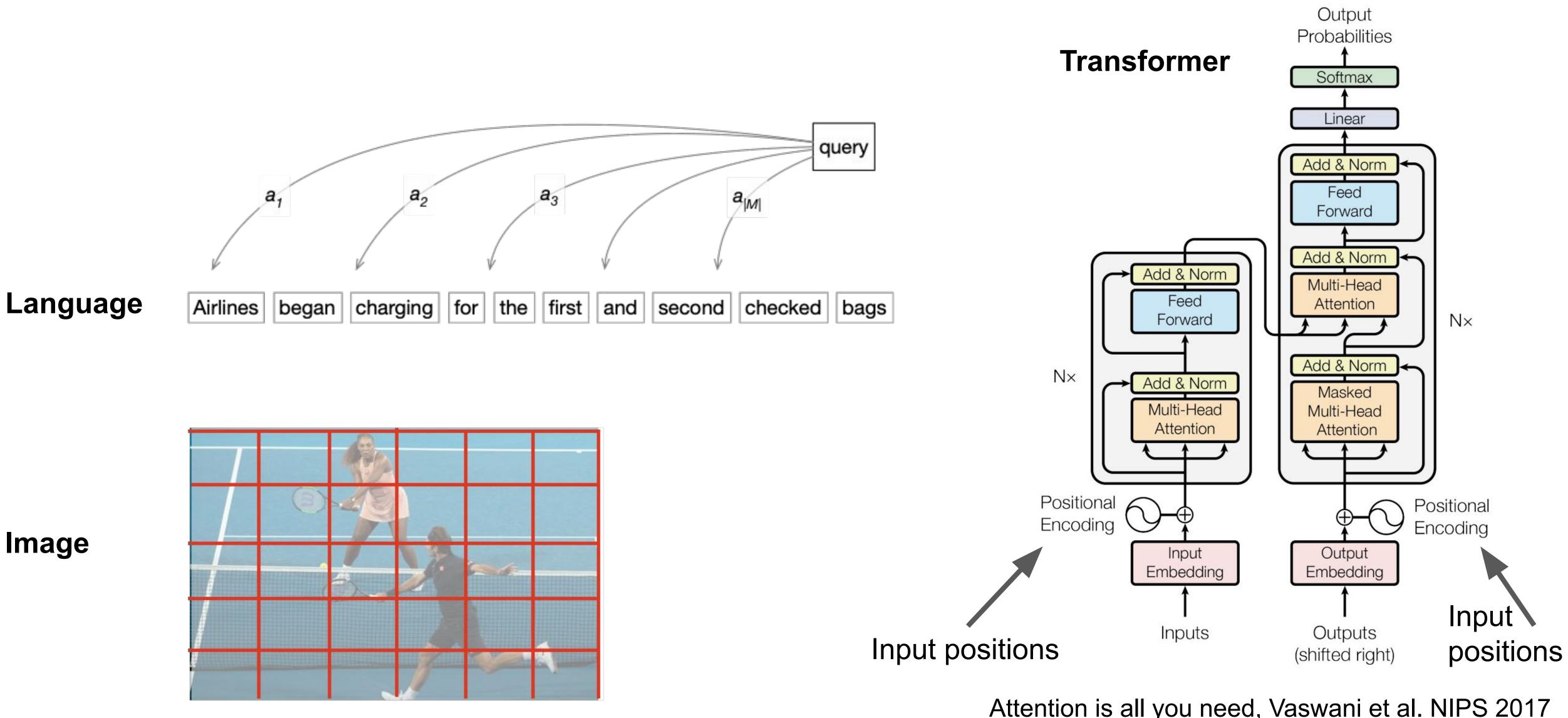


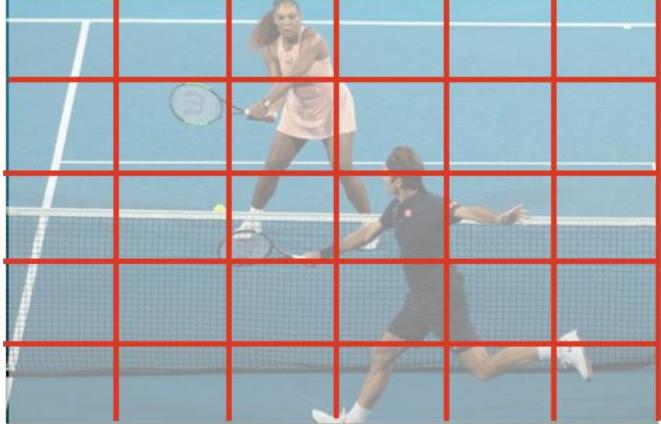
Attention output

$$O_q^M = \sum_{i=1}^{|M|} a_i v_i$$

Bahdanau et al., ICLR 2015 Luong et al., ACL 2015

Why Positional Encoding?

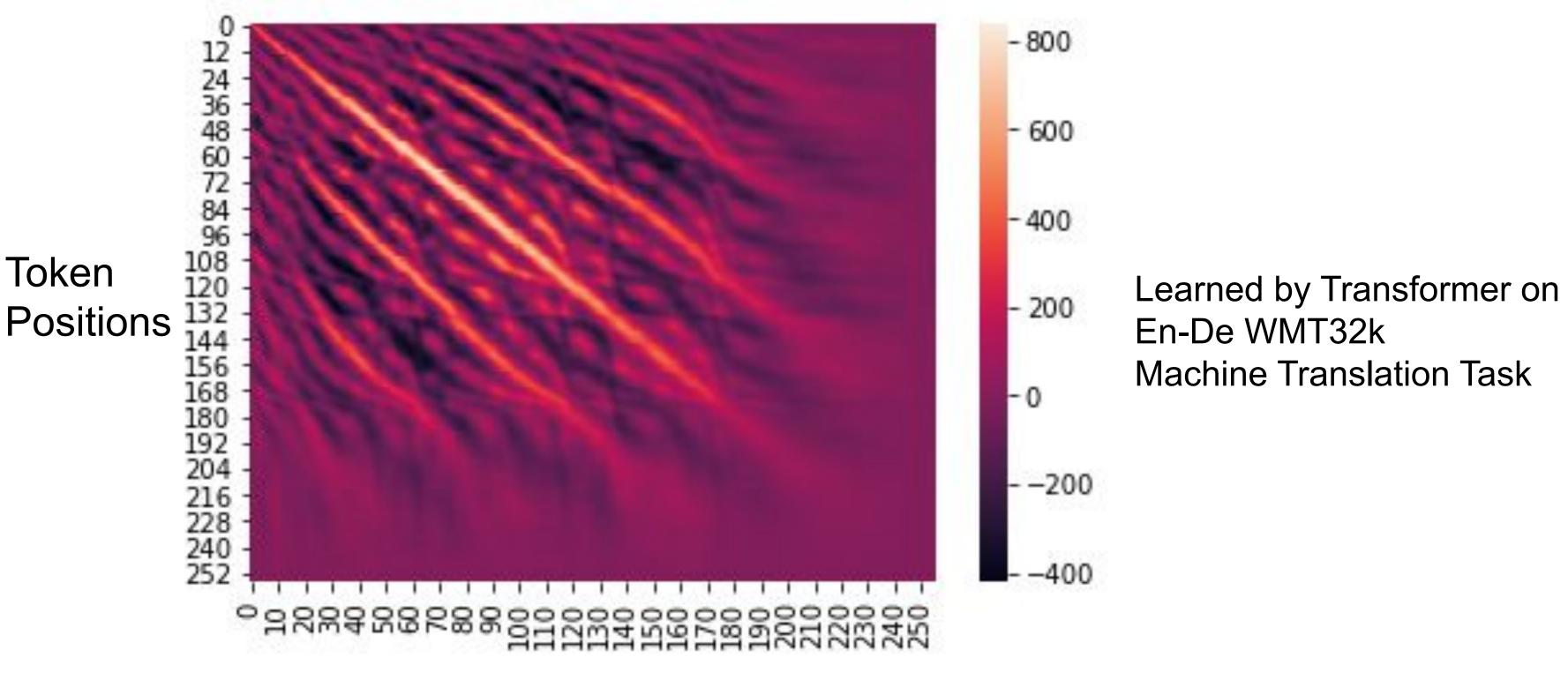




Attention is all you need, Vaswani et al. NIPS 2017

• Learnable embedding for discrete positions

• Learnable embedding for discrete positions

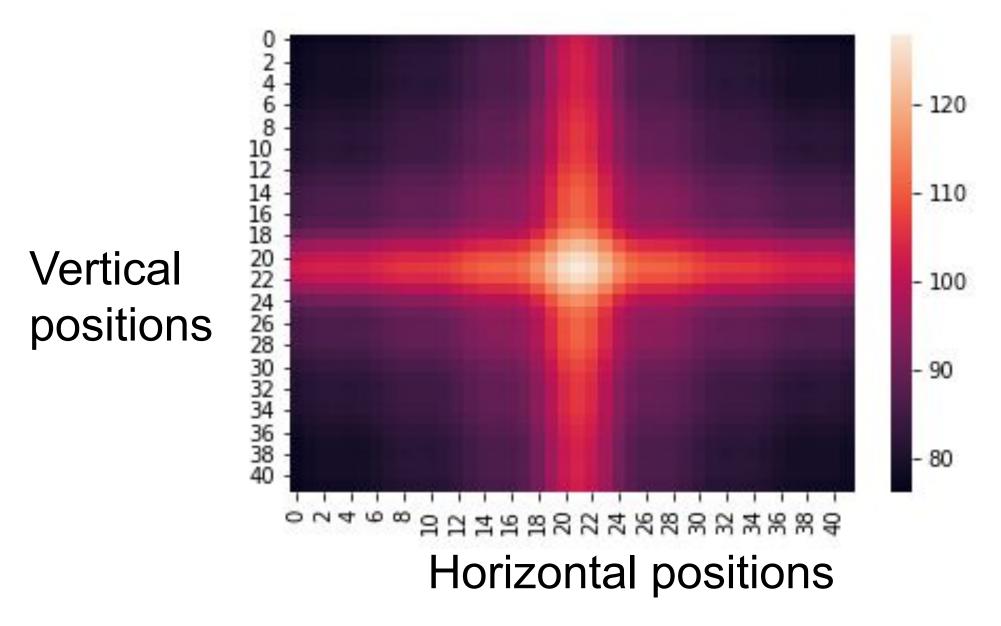


Token positions

- Learnable embedding for discrete positions
- Sinusoidal positional encoding $PE(p, 2d) = \sin \frac{p}{10000^{2d/D}} \qquad PE(p, 2d+1) = \cos \frac{p}{10000^{2d/D}}$

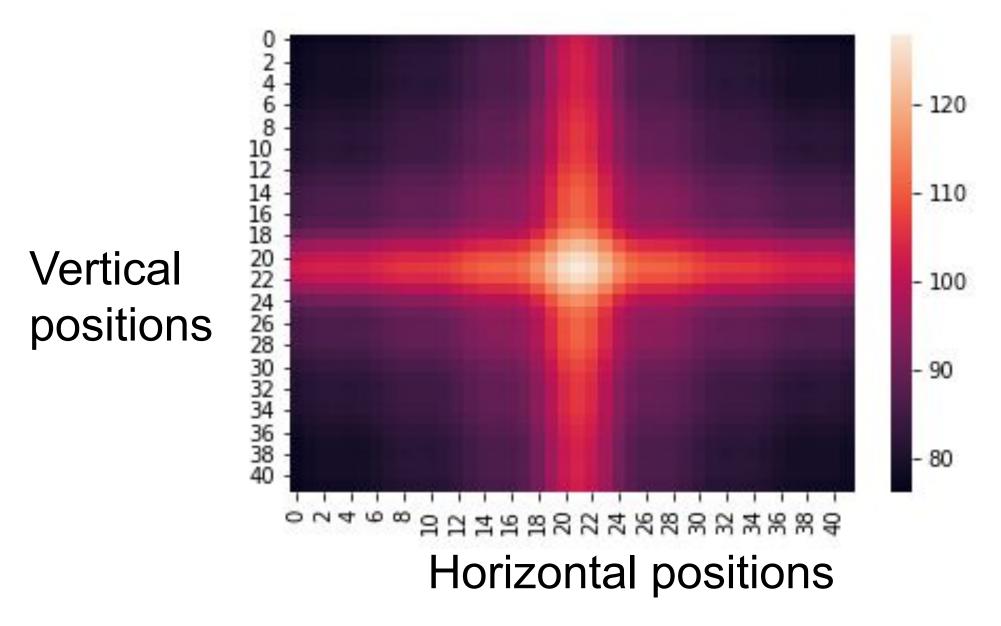
- Learnable embedding for discrete positions
- Sinusoidal positional encoding $PE(p, 2d) = \sin \frac{p}{10000^{2d/D}} \qquad PE(p, 2d+1) = \cos \frac{p}{10000^{2d/D}}$

Sinusoidal encoding for 2D positions by concatenation

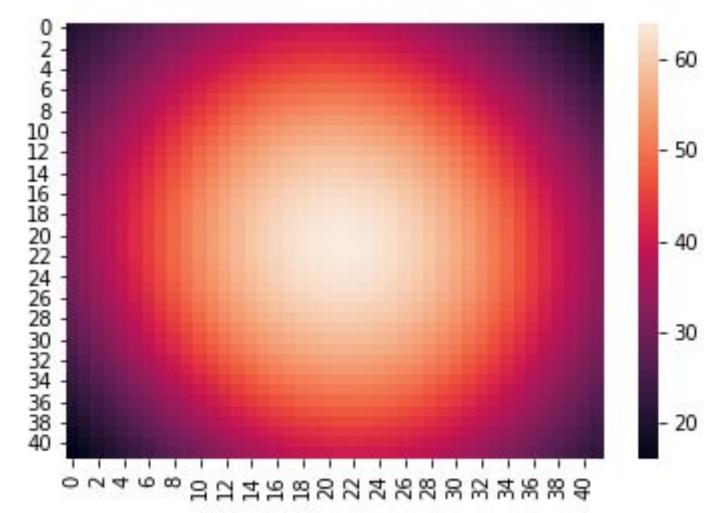


- Learnable embedding for discrete positions
- Sinusoidal positional encoding $PE(p, 2d) = \sin \frac{p}{10000^{2d/D}} \qquad PE(p, 2d+1) = \cos \frac{p}{10000^{2d/D}}$

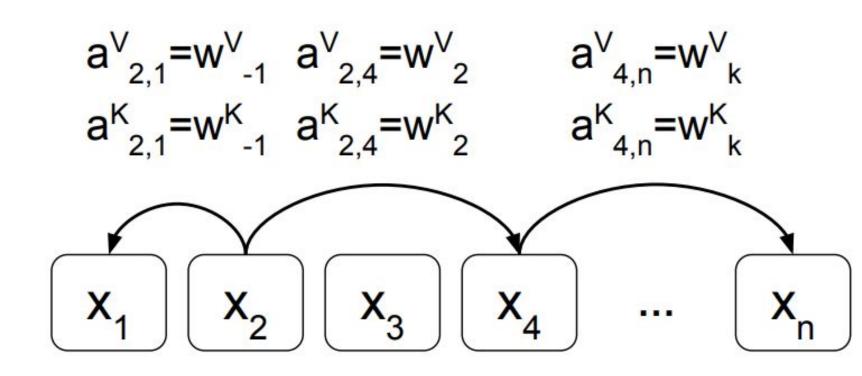
Sinusoidal encoding for 2D positions by concatenation



Ideal similarity for L2 distances



- Learnable embedding for discrete positions
- Sinusoidal positional encoding
- Relative positional encoding



Shaw et al. NAACL 2018

- Design objectives
- Positions as continuous-valued vectors
- Including inductive bias such as L2 distances
- Learnable & composable

Given an M-dimensional position: $x \in R^M$

Acquire D-dimensional Fourier features

Trainable parameters: $W_r \in R^{\frac{D}{2} \times M}$

s:
$$r_x = \frac{1}{\sqrt{D}} [\cos x W_r^T \parallel \sin x W_r^T]$$

Given an M-dimensional position: $x \in R^M$

Acquire D-dimensional Fourier features

Trainable parameters: $W_r \in R^{\frac{D}{2} \times M}$

Shift invariance: $r_x \cdot r_y = \frac{1}{D} \operatorname{sum} \left(\cos((x - y)W_r^T) \right) := h_{W_r}(x - y)$

s:
$$r_x = \frac{1}{\sqrt{D}} [\cos x W_r^T \parallel \sin x W_r^T]$$

Given an M-dimensional position: $x \in R^M$

Acquire D-dimensional Fourier features

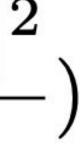
Trainable parameters: $W_r \in R^{\frac{D}{2} \times M}$

Shift invariance: $r_x \cdot r_y = \frac{1}{D} \operatorname{sum}(c$

Approximate Gaussian kernel: $W_r \sim J$

s:
$$r_x = \frac{1}{\sqrt{D}} [\cos x W_r^T \parallel \sin x W_r^T]$$

$$\cos((x-y)W_r^T)) := h_{W_r}(x-y)$$
$$\mathcal{N}(0, \gamma^{-2}) \quad r_x \cdot r_y \approx \exp(-\frac{\|x-y\|}{\gamma^2})$$



Given an M-dimensional position: $x \in R^M$

Acquire D-dimensional Fourier features

MLP Modulator: $PE_x = \phi(r_x, \theta)W_p$

s:
$$r_x = \frac{1}{\sqrt{D}} [\cos x W_r^T \parallel \sin x W_r^T]$$

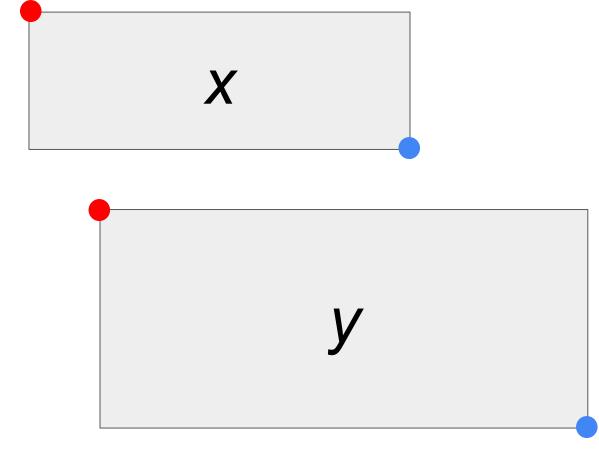
Given an M-dimensional position: $x \in R^M$

Acquire D-dimensional Fourier features

MLP Modulator:

$$PE_x = \phi(r_x, \theta)V$$

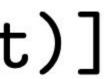
Composability:



$$r_x = \frac{1}{\sqrt{D}} [\cos x W_r^T \parallel \sin x W_r^T]$$

 W_p

One group [(top, left, bottom, right)] Two groups [(top, left), (bottom, right)]



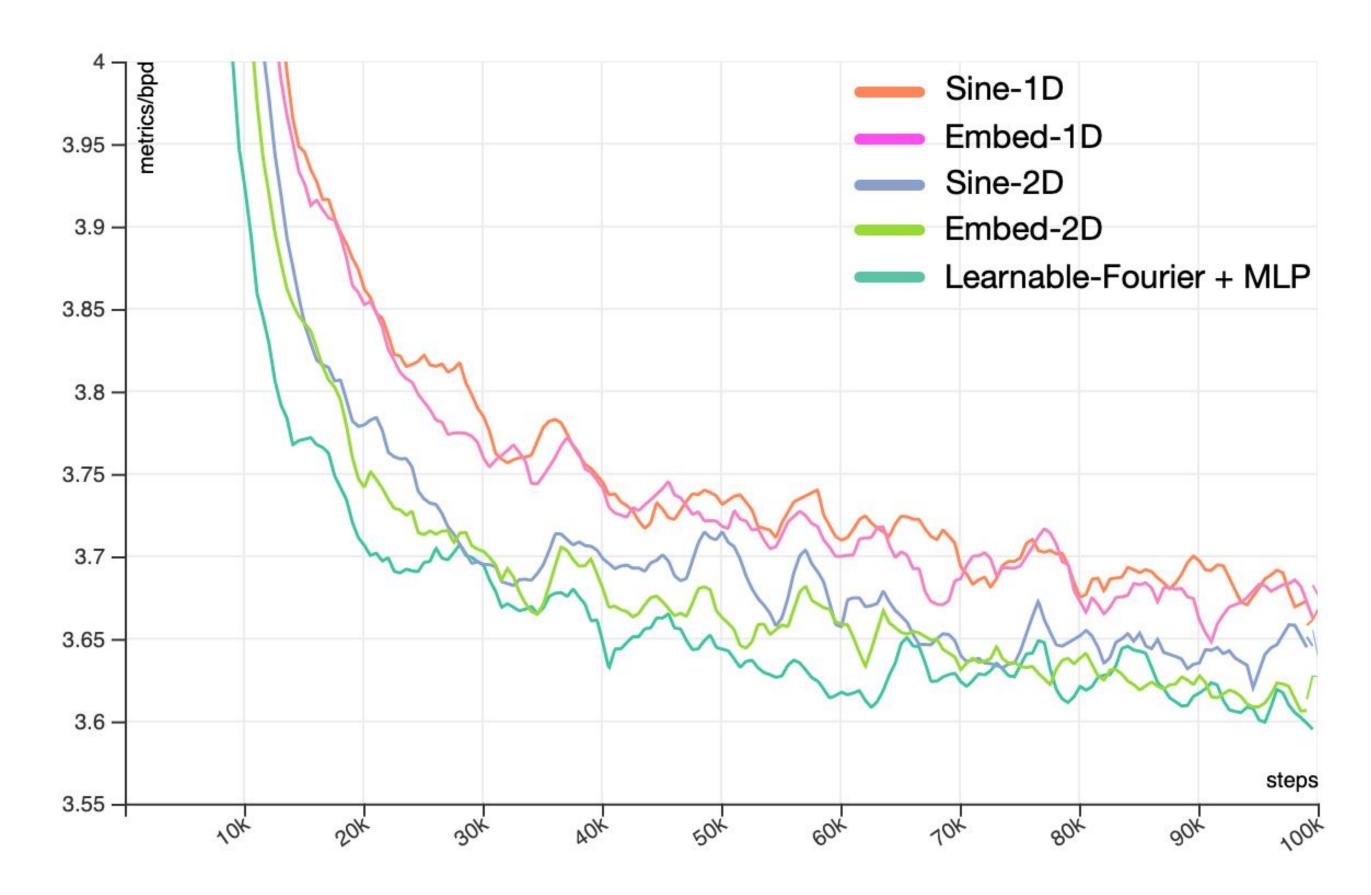
Experiments

- Image generation
- Object detection
- Image classification
- Widget captioning

Image Generation

Benchmark:

- Reformer on ImageNet64 [Kitaev et al. ICLR 2020]
- Images with 64x64 unique 2D pixel positions



et al. ICLR 2020] I positions

Benchmark:

- DETR on MS COCO 2017 [Carion et al. ECCV 2020]
- Image feature maps with 42x42 unique 2D positions

Method	AP	AP_{50}	AP_{75}	AP_{small}	AP_{medium}	AP_{large}
Sine-2D	40.1	60.4	42.6	18.5	43.6	58.8
Embed-2D	39.3	59.8	41.4	18.7	42.5	57.5
MLP	40.0	60.3	42.2	18.6	43.7	58.1
Learnable-Fourier+MLP	40.2	60.7	42.7	18.8	43.8	59.1

Generalization on unseen image sizes

Method	AP	AP_{50}	AP_{75}	AP_{small}	AP_{medium}	AP_{large}
Sine-2D	38.9	59.6	40.9	17.5	42.5	57.5
Embed-2D	36.6	58.2	37.7	15.9	40.0	55.3
MLP	38.6	59.5	40.3	17.1	42.1	57.1
Learnable-Fourier+MLP	39.5	60.0	41.6	18.9	43.0	58.0

Object Detection

Image Classification

Benchmark:

- ViT-B/16 on ImageNet and JFT(300M) [Dosovitskiy et al. ICLR 2021]
- Image feature maps with 14x14 unique 2D positions

Trained & validated on ImageNet Embed-1D: Precision@1=73.6% Learnable-Fourier+MLP: Precision@

Pretrained on JFT and 5-Shot Learning on ImageNet Embed-1D: 64.206% Learnable-Fourier+MLP: 74.732%

0M) [Dosovitskiy et al. ICLR 2021] ique 2D positions

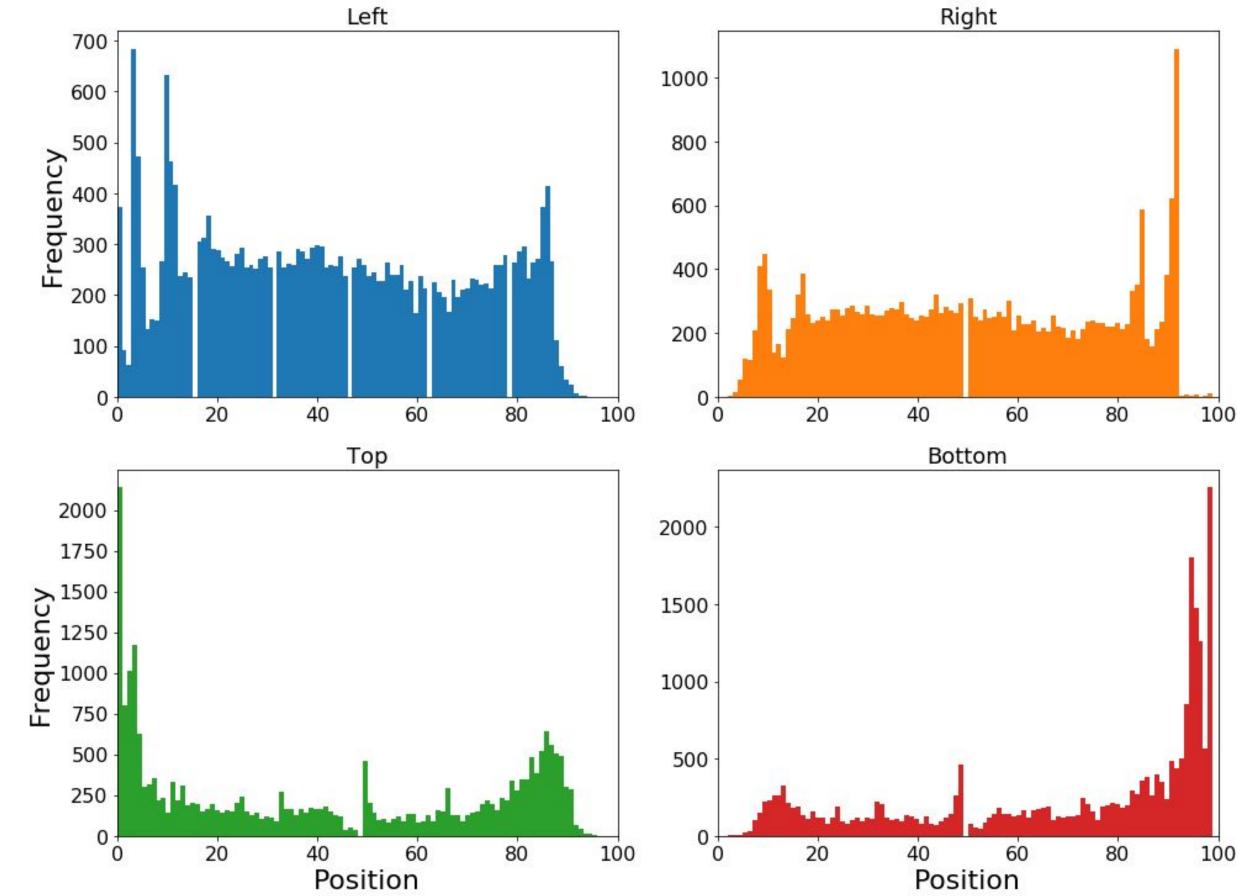
Benchmark:

- Widget captioning [Li et al. EMNLP 2020]
- Sparse spatial UI layouts with 100x100x100x100 4D positions

Positional Embedding	BLEU-1	BLEU-2	ROUGE	CIDEr	METOER	SPICE
SOTA [20]	44.9	32.2	44.7	97.0	31.7	17.6
Embed-4D	45.2	31.9	45.0	97.0	31.7	17.3
MLP	34.0	23.5	33.7	70.3	23.7	10.2
Sine-4D	44.9	31.9	43.9	94.9	31.0	16.7
Learnable-Fourier-2/2	44.9	31.6	44.3	95.3	31.6	17.7
Fixed-Fourier+MLP-1/4	45.0	32.1	44.2	95.4	31.2	17.1
Fixed-Fourier+MLP-2/2	46.1	32.5	45.8	100.2	32.5	18.4
Fixed-Fourier+MLP-4/1	45.5	32.1	45.1	97.2	31.7	17.6
Learnable-Fourier+MLP-1/4	45.6	32.7	45.2	99.1	32.2	17.1
Learnable-Fourier+MLP-2/2	46.1	32.7	45.9	98.0	32.6	17.9
Learnable-Fourier+MLP-4/1	46.8	33.4	46.1	100.7	32.4	17.8

Widget Captioning

Performance on Unseen Positions in Widget Captioning



	Positional Embedding	Seen CIDEr	Unseen CID
0	Embed-4D	123.4	78.5
	Sine-4D	121.3	76.4
	Learnable-Fourier+MLP-4/1	123.4	82.2

Conclusions

- A novel approach for positional encoding based on learnable Fourier features.
 - Positions as continuous-valued vectors
 - Bringing in inductive bias such as L2 distances
 - Learnable & composable
- Extensive experiments based on a range of multi-dimensional spatial tasks.
 - Image generation
 - Object detection
 - Image classification
 - Widget captioning

l vectors as L2 distance

Learnable Fourier Features for Multi-Dimensional Spatial Positional Encoding

Yang Li, Si Si, Gang Li, Cho-Jui Hsieh*, Samy Bengio