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Active learning

Automate data annotation:

• unlabelled data is readily available

• labels are expensive and tedious

• reduce the number of labels to learn a good classifier

Active learning is well-established

in theory: PAC inspired results

in practice: self-driving cars, speech recognition, drug discovery
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Active vertex classification

Given a graph G = (V ,E )

• vertices V represent the data

• edges E representing similarity

• fixed unknown labels
{
,
}

Goal:

Learn labels using as few as possible iterative vertex queries
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Previous results: cut-based bounds

Query complexity: number of queries required to correctly identify the labelling

Cut-based bounds [Afshani, et al. 2007, Dasarathy, et al. 2015]

• cut of the labelling C : set of edges going from one class to the other

• cut border ∂C : set of vertices incident to C

• query complexity:

O (|∂C | log |V |)
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Previous results: cut-based bounds

Query complexity:

O (|∂C | log |V |)

Restrictions:

• labels must be balanced

• bound is label dependent

size of the cut border ∂C can be large or even unknown
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Label-independent bounds

Our goal: label-independent bounds

• only depend on G

• do not depend on labels

• practitioners get a cost estimate before the data annotation

• need assumptions on labels
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Geodesic convexity assumption
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Geodesic convexity assumption

vertices have same label ⇒ vertices on connecting shortest path have the label
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Convexity in Euclidean space

Set is convex: contains all connecting line segments
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Geodesic convexity on graphs

Vertex set is convex: contains all connecting shortest paths

Convex hull σ(X ) is the smallest convex vertex set containing X
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Convexity in real-world graphs

Cancer-related genes share similarity along shortest paths

[Bi-Qing Li, et al. 2012]
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Convexity in real-world graphs

dataset convex communities

DBLP 4308/5000

Amazon 3999/5000

Youtube 2990/5000

LiveJournal 1649/5000

Orkut 363/5000

Eu-core 7/42

[SNAP datasets]

Max Thiessen 15



Halfspaces on graphs

Vertex set C is a halfspace, if C and V \ C are convex

Assumption: blue subgraph and red subgraph are halfspaces
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Upper bound on the query complexity

Query complexity:

O(h(G ) + log d(G ) + tw(G ))

minimum hull set size h(G)
treewidth tw(G )
(small for e.g., molecules)

diameter d(G )

A set H ⊆ V (G ) is a hull set if σ(H) = V (G )
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Upper bound on the query complexity

O(h(G ) + log d(G ) + tw(G ))
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General lower bound

A vertex x is extreme, if V \ {v} is convex

• generalisation of leaves

• set of extreme vertices Ext(G )

Query complexity is

Ω(|Ext(G )|)

Can be far away from

O(h(G ) + log d(G ) + tw(G ))
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Lower bounds

Upper bound:

• O(h(G ) + log d(G ) + tw(G ))

Lower bounds along separation axioms [van de Vel 1993]

S1: any singleton v ∈ V is convex

Ω(|Ext(G )|)
S2: any pair of vertices v 6= w is halfspace separable

Ω(|Ext(G )|+ log d(G ))

S3: any convex set C and v ∈ V \ C are halfspace separable

Ω(h(G ) + log d(G ))

S4: any two disjoint convex sets are halfspace separable

Ω(h(G ) + log d(G ) + Radon(G ))
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Radon number

Radon partition R1,R2 of a set R:

• R1 ∪ R2 = R, R1 ∩ R2 = ∅
• σ(R1) ∩ σ(R2) 6= ∅

Radon number: Smallest number r such that any set of size r has a Radon partition

VC dimension of halfspaces is ≤ Radon(G )− 1

Remarks:

• Rn has VC dimension n + 1 and Radon number n + 2

• For S4 graphs the VC dimension is exactly Radon(G )− 1.
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Experiments

Two moons dataset
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Conclusions and future directions

We characterised the query complexity of learning halfspaces in graphs

• tight bounds along separation axioms

• identified the Radon number as an important parameter

• more details in the paper (proofs, computational runtime, ...)

Future research directions:

• learning halfspaces in general convexity spaces

• more efficient algorithms

• more robust and practical assumptions

Thanks for listening!
See you in the poster session
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