Active Learning of Convex Halfspaces on Graphs

Maximilian Thiessen Thomas Gärtner

TU Wien Vienna | Austria Research Unit Machine Learning

Automate data annotation:

- unlabelled data is readily available
- labels are expensive and tedious
- reduce the number of labels to learn a good classifier

Active learning is well-established

in theory: PAC inspired results

in practice: self-driving cars, speech recognition, drug discovery

Given a graph G = (V, E)

- vertices V represent the data
- edges *E* representing similarity
- fixed unknown labels {•,•}

Goal:

Learn labels using as few as possible iterative vertex queries

Previous results: cut-based bounds

Query complexity: number of queries required to correctly identify the labelling **Cut-based bounds** [Afshani, et al. 2007, Dasarathy, et al. 2015]

- cut of the labelling C: set of edges going from one class to the other
- cut border ∂C : set of vertices incident to C
- query complexity:

 $\mathcal{O}\left(\left|\partial C\right|\log\left|V\right|\right)$

Query complexity:

$\mathcal{O}\left(\left|\partial C\right|\log |V|\right)$

Restrictions:

- labels must be **balanced**
- bound is label dependent

size of the cut border ∂C can be large or even unknown

Our goal: label-independent bounds

- only depend on G
- do not depend on labels
- practitioners get a cost estimate before the data annotation
- need assumptions on labels

Geodesic convexity assumption

Geodesic convexity assumption

vertices have same label \Rightarrow vertices on connecting shortest path have the label

Set is convex: contains all connecting line segments

Vertex set is convex: contains all connecting shortest paths

Convex hull $\sigma(X)$ is the smallest convex vertex set containing X

Convexity in real-world graphs

Cancer-related genes share similarity along shortest paths

[Bi-Qing Li, et al. 2012]

dataset	convex communities
DBLP	4308/5000
Amazon	3999/5000
Youtube	2990/5000
LiveJournal	1649/5000
Orkut	363/5000
Eu-core	7/42

[SNAP datasets]

Vertex set *C* is a **halfspace**, if *C* and $V \setminus C$ are convex

Assumption: blue subgraph and red subgraph are halfspaces

Query complexity:

 $\mathcal{O}(h(G) + \log d(G) + \mathsf{tw}(G))$

Query complexity:

$$\mathcal{O}(h(G) + \log d(G) + \operatorname{tw}(G))$$

diameter $d(G)$

Query complexity:

Query complexity:

A set $H \subseteq V(G)$ is a hull set if $\sigma(H) = V(G)$

Max Thiessen

 $\mathcal{O}(h(G) + \log d(G) + \operatorname{tw}(G))$

General lower bound

A vertex x is extreme, if $V \setminus \{v\}$ is convex

- generalisation of leaves
- set of extreme vertices Ext(G)

Query complexity is

 $\Omega(|\mathsf{Ext}(G)|)$

Can be far away from

 $\mathcal{O}(h(G) + \log d(G) + \mathsf{tw}(G))$

Upper bound:

• $\mathcal{O}(h(G) + \log d(G) + \mathsf{tw}(G))$

Lower bounds along separation axioms [van de Vel 1993]

Upper bound:

• $\mathcal{O}(h(G) + \log d(G) + \mathsf{tw}(G))$

Lower bounds along separation axioms [van de Vel 1993]

 S_1 : any singleton $v \in V$ is convex

 $\Omega(|\mathsf{Ext}(G)|)$

Upper bound:

• $\mathcal{O}(h(G) + \log d(G) + \mathsf{tw}(G))$

Lower bounds along separation axioms [van de Vel 1993]

 S_1 : any singleton $v \in V$ is convex

 $\Omega(|\mathsf{Ext}(G)|)$

 S_2 : any pair of vertices $v \neq w$ is halfspace separable

 $\Omega(|\mathsf{Ext}(G)| + \log d(G))$

Upper bound:

• $\mathcal{O}(h(G) + \log d(G) + \mathsf{tw}(G))$

Lower bounds along separation axioms [van de Vel 1993]

 S_1 : any singleton $v \in V$ is convex

 $\Omega(|\mathsf{Ext}(G)|)$

 $\begin{array}{l} S_2\text{: any pair of vertices } v \neq w \text{ is halfspace separable} \\ & \Omega(|\mathsf{Ext}(G)| + \log d(G)) \\ S_3\text{: any convex set } C \text{ and } v \in V \setminus C \text{ are halfspace separable} \\ & \Omega(h(G) + \log d(G)) \end{array}$

Upper bound:

• $\mathcal{O}(h(G) + \log d(G) + \mathsf{tw}(G))$

Lower bounds along separation axioms [van de Vel 1993]

 S_1 : any singleton $v \in V$ is convex

 $\Omega(|\mathsf{Ext}(G)|)$

 $S_{2}: \text{ any pair of vertices } v \neq w \text{ is halfspace separable} \\ \Omega(|\mathsf{Ext}(G)| + \log d(G)) \\ S_{3}: \text{ any convex set } C \text{ and } v \in V \setminus C \text{ are halfspace separable} \\ \Omega(h(G) + \log d(G)) \\ S_{4}: \text{ any two disjoint convex sets are halfspace separable} \\ \Omega(h(G) + \log d(G) + \operatorname{Radon}(G)) \\ \end{array}$

Radon number

Radon partition R_1, R_2 of a set R:

- $R_1 \cup R_2 = R$, $R_1 \cap R_2 = \emptyset$
- $\sigma(R_1) \cap \sigma(R_2) \neq \emptyset$

Radon number: Smallest number r such that any set of size r has a Radon partition

Radon number

Radon partition R_1, R_2 of a set R:

- $R_1 \cup R_2 = R$, $R_1 \cap R_2 = \emptyset$
- $\sigma(R_1) \cap \sigma(R_2) \neq \emptyset$

Radon number: Smallest number r such that any set of size r has a Radon partition

VC dimension of halfspaces is $\leq \text{Radon}(G) - 1$

Radon number

Radon partition R_1, R_2 of a set R:

- $R_1 \cup R_2 = R$, $R_1 \cap R_2 = \emptyset$
- $\sigma(R_1) \cap \sigma(R_2) \neq \emptyset$

Radon number: Smallest number r such that any set of size r has a Radon partition

```
VC dimension of halfspaces is \leq \text{Radon}(G) - 1
```

Remarks:

- \mathbb{R}^n has VC dimension n+1 and Radon number n+2
- For S_4 graphs the VC dimension is exactly Radon(G) 1.

Upper bound:

• $\mathcal{O}(h(G) + \log d(G) + \operatorname{tw}(G))$

Lower bounds along separation axioms [van de Vel 1993]

 S_1 : any singleton $v \in V$ is convex

 $\Omega(|\mathsf{Ext}(G)|)$

S₂: any pair of vertices $v \neq w$ is halfspace separable $\Omega(|\mathsf{Ext}(G)| + \log d(G))$ S₃: any convex set C and $v \in V \setminus C$ are halfspace separable $\Omega(h(G) + \log d(G))$ S₄: any two disjoint convex sets are halfspace separable $\Omega(h(G) + \log d(G) + \mathsf{Radon}(G))$ Experiments

Two moons dataset

Conclusions and future directions

We characterised the query complexity of learning halfspaces in graphs

- tight bounds along separation axioms
- identified the Radon number as an important parameter
- more details in the paper (proofs, computational runtime, ...)

Conclusions and future directions

We characterised the query complexity of learning halfspaces in graphs

- tight bounds along separation axioms
- identified the Radon number as an important parameter
- more details in the paper (proofs, computational runtime, ...)

Future research directions:

- · learning halfspaces in general convexity spaces
- more efficient algorithms
- more robust and practical assumptions

Conclusions and future directions

We characterised the query complexity of learning halfspaces in graphs

- tight bounds along separation axioms
- identified the Radon number as an important parameter
- more details in the paper (proofs, computational runtime, ...)

Future research directions:

- · learning halfspaces in general convexity spaces
- more efficient algorithms
- more robust and practical assumptions

Thanks for listening!

See you in the poster session