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Message Passing

Machine learning using distributed 
algorithm on graph 𝐺 = 𝑉, 𝐸 .
Node 𝑣! ∈ 𝑉 do local computation,
depends only on information at 𝑣!, 
neighbours, and incident edges 𝑒!" ∈ 𝐸.
Information sent through 𝑒!" to 𝑣" as 
message 𝑚!".
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Why Message Passing Algorithms?

Effective in practice! 
• Graph neural networks
• Transformer
• Probabilistic graphical model inference 
• Value iteration for Markov decision process ....

Potentially easier to parallelize.



Plan for Tutorial
Cover better understood, more “interpretable” models and algorithms

• Probabilistic graphical models (PGM), inference algorithms 
• Markov decision process (MDP), decision algorithm
What do the components of the models represent?
What objective functions are the algorithms are optimizing for?

Discuss more flexible, less “interpretable” methods
• Graph neural networks 
• Attention networks, transformer

Connect to PGM and MDP, help understand the inductive biases.



Outline

• Probabilistic Graphical Models



Probabilistic Graphical Model
Focus on Markov random fields
𝑁 random variables {𝑋!, 𝑋", … , 𝑋#}
𝑝 𝒙 = 𝑝(𝑋! = 𝑥!, 𝑋" = 𝑥", … , 𝑋$ = 𝑥$)
factors into a product of functions

𝑝 𝒙 =
1
𝑍
/
%

𝜓%(𝒙%)

• 𝑀 non-negative compatibility or potential
functions 𝜓! , 𝜓, … , 𝜓"

• 𝑥#, the argument of 𝜓#, is a subset of 
𝑥$, 𝑥%, … , 𝑥&

• 𝑍, the partition function, is the 
normalizing constant 

Graphical representation using factor graph: 
bipartite graph, each factor node connected 
to variable nodes that it depends on 
$
'
𝜓! 𝑥$, 𝑥( 𝜓) 𝑥$, 𝑥%, 𝑥* 𝜓+(𝑥*)

𝑥!

𝑥"

𝑥#

𝑥$

𝐴

𝐵

𝐶



When compatibility functions always positive, can write 

𝑝 𝒙 =
1
𝑍
/
#

𝜓#(𝒙#)

=
1
𝑍
𝑒$%(𝒙)

where 

𝐸 𝒙 = −4
#

)

ln 𝜓# 𝒙#

is the energy function.



Error Correcting Codes

[Fig from http://www.inference.org.uk/mackay/codes/gifs/]
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MAP, Marginals, and Partition Function
Maximum a posteriori (MAP): 
find a state 𝒙 that maximizes 𝑝 𝒙

• Equivalently minimizes the energy 𝐸 𝒙

Marginal: probabilities for individual variable 

𝑝! 𝑥! = ∑𝒙\+' 𝑝 𝒙

Partition function: Compute the normalizing 
constant

Z =4
𝒙
/
#

𝜓#(𝒙#)



Semantic Segmentation
In conditional random field (CRF), 
the conditional distribution 
𝑝 𝒙 𝑰 = ,

-(𝑰)
𝑒$%(𝒙|𝑰) is modeled.

• For semantic segmentation 𝑰 is the 
image and 𝒙 is the semantic class label.
𝐸 𝒙|𝑰 = ∑%𝜙( 𝑥%|𝑰 + ∑%)*𝜙+ 𝑥% , 𝑥* 𝑰)

[Figs from Zheng et. al. 2015]



Message passing algorithm
Sum product computes the marginals

𝑛%, 𝑥% = F
-∈/(%)\3

𝑚-%(𝑥%)

𝑚,% 𝑥% = ∑
𝒙!\5"

𝜓, 𝒙, F
*∈/(,)\6

𝑛%*(𝑥*)

𝑏% 7" ∝ F
,∈/(%)

𝑚,%(𝑥%)

Max product solves the MAP problem: just replace 
sum with max in message passing
Works exactly on trees, dynamic 
programming

Belief Propagation
𝑥!

𝑥"

𝑥#

𝑥$

𝐴

𝐵
𝐶

𝑥!

𝑥"𝑥# 𝑥$

𝐴𝐵

𝐶

tree

Correctness 𝐷

𝐷



Every variable and factor nodes compute messages in parallel 
at each iteration

• After 𝑂(𝐷) iterations, where 𝐷 is the diameter of the tree, all messages 
and all marginals are correct.

Suffices to pass messages from leaves to the root and back
• More efficient for serial computation

Belief Propagation on Trees



Loopy Belief Propagation
Belief propagation can also be applied to general probabilistic graphical 
models
Often called loopy belief propagation
As a message passing algorithm:

Init all messages 𝑛%, , 𝑚,% to all-one vectors
repeat 𝑇 iterations

for each variable 𝑖 and factor 𝑎 compute (in parallel)
𝑛%, 𝑥% = ∏-∈/(%)\3𝑚-%(𝑥%) for each 𝑎 ∈ 𝑁(𝑖)
𝑚,% 𝑥% = ∑

𝒙!\5"
𝜓, 𝒙, ∏*∈/(,)\6𝑛%*(𝑥*) for each 𝑖 ∈ 𝑁(𝑎)

return 𝑏% 7" =
!
8"
∏,∈/(%)𝑚,%(𝑥%) for each 𝑖

𝑥!

𝑥"𝑥# 𝑥$

𝐴𝐵

𝐶



Belief propagation may fail 
when there are cycles 

• May not even converge
• Often works well in practice 

when converges

Variational inference ideas 
help understand loopy belief 
propagation

𝑥!

𝑥"𝑥# 𝑥$

𝐴𝐵

𝐶

𝑛%, 𝑥% = F
-∈/(%)\3

𝑚-%(𝑥%)

𝑚,% 𝑥% = ∑
𝒙!\5"

𝜓, 𝒙, F
*∈/(,)\6

𝑛%*(𝑥*)

𝑏% 7" ∝ F
,∈/(%)

𝑚,%(𝑥%)



Variational Principles

View message passing algorithms through lens of variational 
principles
• A variational principle solves a problem by viewing the solution 

as an extremum (maximum, minimum, saddle point) of a 
function or functional

• To understand or “interpret” an algorithm, ask “what objective 
might the algorithm implicitly be optimizing for?”



In standard variational inference, 
we approximate the Helmholtz 
free energy

𝐹! = − ln𝑍
𝑍 = ∑𝒙 𝑒#$(𝒙) , 𝑝(𝒙) = 𝑒#$(𝒙)/𝑍

by turning it into an optimization 
problem

For target belief 𝑝 and arbitrary belief 𝑞
𝐹! = 𝐹 𝑞 − 𝐾𝐿(𝑞||𝑝)

where 𝐹 𝑞 is the variational free 
energy
𝐹 𝑞 =<

'
𝑞 𝒙 𝐸 𝒙 +<

'
𝑞 𝒙 ln 𝑞(𝒙)

and 𝐾𝐿(𝑞||𝑝) is the Kullback Lieber 
divergence between 𝑞 and 𝑝

𝐾𝐿(𝑞| 𝑝 =<
'
𝑞 𝒙 ln

𝑞 𝒙
𝑝 𝒙

Variational Inference

Derivation:
ln 𝑝 𝑥 = −𝐸 𝑥 − ln 𝑍

𝐹! = − ln 𝑍 =1
"

𝑞 𝑥 𝐸 𝑥 +1
"

𝑞 𝑥 ln 𝑝 𝑥

=1
"

𝑞 𝑥 𝐸 𝑥 +1
"

𝑞 𝑥 ln 𝑝 𝑥 + 1
"

𝑞 𝑥 ln 𝑞 𝑥 −1
"

𝑞 𝑥 ln 𝑞 𝑥

=1
"

𝑞 𝑥 𝐸 𝑥 + 1
"

𝑞 𝑥 ln 𝑞 𝑥 −1
"

𝑞 𝑥 ln 𝑞 𝑥 /𝑝(𝑥)



Terminology
The variational free energy
𝐹 𝑞 =T

7
𝑞 𝒙 𝐸 𝒙 +T

7
𝑞 𝒙 ln 𝑞(𝒙)

= 𝑈 𝑞 − 𝐻(𝑞)
where 𝑈 𝑞 = ∑7 𝑞 𝒙 𝐸 𝒙
is the variational average energy 
and 𝐻(𝑞)= -∑7 𝑞 𝒙 ln 𝑞(𝒙)
is the variational entropy.

𝐾𝐿(𝑞| 𝑝 ≥ 0 and is zero when 
𝑞 = 𝑝. 
From 𝐹0 = 𝐹 𝑞 − 𝐾𝐿(𝑞||𝑝), 
𝐹 𝑞 is an upper bound for 𝐹0

• Minimizing 𝐹 𝑞 improves 
approximation, exact when 𝑞 = 𝑝

Minimizing 𝐹 𝑞 intractable in 
general

• One approximate method is to use 
a tractable 𝑞

• Mean field uses a factorized 
belief

𝑞9: 𝑥 =F
%;!

/

𝑞%(𝑥%)



Mean Field

Mean field often solved by coordinate descent
• Optimize one variable at a time, holding other variables 

constant

𝑞[ 𝑥[ = \
]5
6 exp −∑𝒙\_5∏`a[

b 𝑞` 𝑥` 𝐸 𝒙

Coordinate descent converges to local optimum. 
• Local optimum is fixed point of updates for all variables.
• Parallel updates can also be done but may not always converge

Derivation



Mean field as message passing
Recall 𝐸 𝒙 = −∑,9 ln𝜓, 𝒙,

𝑞# 𝑥# =
1
𝑍#$
exp 9

𝒙\'!
:
()#

*

𝑞( 𝑥( 9
+

,

ln𝜓+ 𝒙+

=
1
𝑍#$
exp 9

+∈*(#)

9
𝒙\'!

:
()#

*

𝑞( 𝑥( ln𝜓+ 𝒙+ + 9
+∉*(#)

9
𝒙\'!

:
()#

*

𝑞( 𝑥( ln𝜓+ 𝒙+

To compute 𝑞, 𝑥, , only need 𝜓# 𝒙# for neighbouring factors 𝑎 ∈ 𝑁 𝑗

Does not depend on 𝑥#, constant

Previously
𝑞* 𝑥* = !

81
2 exp −∑𝒙\51∏%<*

/ 𝑞% 𝑥% 𝐸 𝒙



As a message passing algorithm on a factor graph:
repeat 𝑇 iterations

for each variable 𝑗 compute (serially or in parallel)
𝑚78(𝑥8) = ∑𝒙!\:1∏;∈= 7 ,;?8

= 𝑞; 𝑥; ln 𝜓7 𝒙7 for 𝑎 ∈ 𝑁 𝑗 in parallel

𝑞8 𝑥8 = @
A1
2 exp ∑7∈= 8 𝑚78 𝑥8

𝑥!

𝑥"𝑥# 𝑥$

𝐴𝐵

𝐶



Loopy Belief Propagation and 
Bethe Free Energy1

For a tree-structured factor graph, the variational 
free energy

𝐹 𝑞 =)
-
𝑞 𝒙 𝐸 𝒙 +)

-
𝑞 𝒙 ln 𝑞(𝒙)

= −)
#.$

"

)
𝒙$
𝑞# 𝒙# ln𝜓# 𝒙#

+)
#.$

"

)
𝒙𝒂
𝑞# 𝒙𝒂 ln

𝑞#(𝒙#)
∏1∈&(#)𝑞1(𝑥1)

+)
1.$

&

)
-&
𝑞1 𝑥1 ln 𝑞1(𝑥1)

1 Yedidia, Jonathan S., William T. Freeman, and Yair Weiss. "Constructing free-energy approximations and 
generalized belief propagation algorithms." IEEE Transactions on information theory 51.7 (2005): 2282-2312.

Derivation

Variational average energy

Variational entropy



For the Bethe approximation, the following Bethe free energy 
𝐹?@AB@ 𝑞 = 𝑈?@AB@ 𝑞 − 𝐻?@AB@(𝑞) is used even though the graph may 
not be a tree, where

𝑈?@AB@ 𝑞 = −4
#C,

)

4
D=
𝑞# 𝒙# ln 𝜓# 𝒙#

H?@AB@ = −4
#C,

)

4
𝒙𝒂
𝑞# 𝒙𝒂 ln

𝑞# 𝒙𝒂
∏!∈G # 𝑞! 𝑥!

−4
!C,

G

4
D'
𝑞! 𝑥! ln 𝑞!(𝑥!)

For a tree-structured factor graph, the variational free energy

𝐹 𝑞 =)
-
𝑞 𝒙 𝐸 𝒙 +)

-
𝑞 𝒙 ln 𝑞(𝒙)

= −)
#.$

"

)
𝒙$
𝑞# 𝒙# ln𝜓# 𝒙# +)

#.$

"

)
𝒙𝒂
𝑞# 𝒙𝒂 ln

𝑞#(𝒙#)
∏1∈&(#)𝑞1(𝑥1)

+)
1.$

&

)
-&
𝑞1 𝑥1 ln 𝑞1(𝑥1)



In addition, we impose the constraints
• ∑7_% 𝑞% 𝑥% = ∑𝒙𝒂 𝑞, 𝒙, = 1
• 𝑞% 𝑥% ≥ 0, 𝑞, 𝑥, ≥ 0
• ∑𝒙𝒂 \5" 𝑞, 𝒙, = 𝑞%(𝑥%)

What does loopy belief propagation optimize?
Loopy belief propagation equations give the stationary points of 
the constrained Bethe free energy.

Derivation



We only specify the factor 
marginals 𝑞# 𝒙# and the variable 
marginals 𝑞!(𝑥!).
• There may be no distribution 𝑞

whose marginals agree with 
𝑞# 𝒙#

• Often called pseudomarginals
instead of marginal

Furthermore, the Bethe entropy 
𝐻?@AB@(𝑞) is an approximation of 
the variational entropy when the 
graph is not a tree

Figure from Wainwright and Jordan 2008.
The set of marginals from valid probability  
distributions 𝑀(𝐺) is a strict subset of the 
set of of pseudomarginals 𝐿(𝐺).



Variational Inference Methods

Mean field minimizes the variational free energy 
𝐹 𝑞 = 𝑈 𝑞 − 𝐻(𝑞)

• Assumes fully factorized 𝑞 for tractability
• Can be extended to other tractable 𝑞: structured mean field
• Minimizes upper bound of Helmholtz free energy 𝐹0 = − ln𝑍
• Converges to local optimum if coordinate descent used, may 

not converge for parallel update
• Update equations be computed as message passing on graph



Variational Inference Methods
Loopy belief propagation can be viewed as minimizing Bethe free 
energy, 𝐹?@AB@ 𝑞 = 𝑈?@AB@ 𝑞 − 𝐻?@AB@(𝑞), an approximation of 
variational free energy

• May not be an upper bound of 𝐹@
• Resulting 𝑞 may not be consistent with a probability distribution
• May not converge, but performance often good when converges
• Message passing on a graph, various methods to help convergence, 

e.g. scheduling messages, damping, etc.
• Extension to generalized belief propagation for other region based free 

energy, e.g. Kikuchi free energy
Other commonly found variational inference message passing 
methods include expectation propagation, also max product 
linear programming relaxations for finding MAP approximations.



Parameter Estimation
Learn parameterized compatibility functions or components of energy 
function 𝐸 𝒙|𝜽 = −∑7B ln 𝜓7 𝒙7|𝜃
• Can do maximum likelihood estimation
• If some variables are not observed, can do the EM algorithm
• If inference intractable, variational approximation for estimating the 

latent variables is one approach: variational EM
• With mean field approximation, maximize a lower bound of likelihood 

function 
• Can also treat parameters as latent variables: Variational Bayes
For this tutorial, focus on unrolling the message passing algorithm into 
a deep neural network and doing end-to-end learning (later).



Outline

• Markov Decision Process



Markov Decision Process

Markov Decision Process (MDP) is 
defined by 𝑆, 𝐴, 𝑇, 𝑅
State 𝑆 :  Current description of the 
world

• Markov: the past is irrelevant once 
we know the state

• Navigation example: Position of the 
robot 

Robot navigation



MDP 𝑆, 𝐴, 𝑇, 𝑅
Actions 𝐴 :  Set of available 
actions

• Navigation example:
• Move North
• Move South
• Move East
• Move West

Robot navigation



MDP 𝑆, 𝐴, 𝑇, 𝑅
Transition function 𝑇 :

• 𝑇 𝑠, 𝑎, 𝑠A = 𝑃(𝑠A|𝑠, 𝑎)
• Navigation example:

• Darker shade, higher probability

Robot navigation



MDP 𝑆, 𝐴, 𝑇, 𝑅
Reward function 𝑅 :  Reward 
received when action 𝑎 in state 𝑠
results in transition to state 𝑠′

• 𝑅(𝑠, 𝑎, 𝑠5)
• Navigation example: 

• 100 if 𝑠′ is Home
• -100 if 𝑠′ is in the danger zone
• -1 otherwise

• Can be a function of a subset of 
𝑠, 𝑎, 𝑠5 as in navigation example

Robot navigation



Example of 3 state, two action 
Markov Decision Process 
𝑆, 𝐴, 𝑇, 𝑅

• Transition can be sparse as in 
navigation example

[Fig by waldoalvarez CC BY-SA 4.0 ]



MDP 𝑆, 𝐴, 𝑇, 𝑅
Policy 𝜋:  Function from state and 
time step to action

• 𝑎 = 𝜋 (𝑠, 𝑡)
• Navigation example: 

• Which direction to move at current 
location at step 𝑡

Robot navigation



Robot navigation
MDP 𝑆, 𝐴, 𝑇, 𝑅
Value function 𝑉I:  How good is a 
policy 𝜋 when started from state 𝑠

• 𝑉B 𝑠C = ∑D;CEF!𝐸[𝑅(𝑠D , 𝜋 𝑠D , 𝑡 , 𝑠DG!)
• 𝑇 is the horizon
• When horizon is infinite, usually 

use discounted reward
• 𝑉4 𝑠 = ∑5678 𝐸[𝛾5 𝑅(𝑠5 , 𝜋 𝑠5 , 𝑡 , 𝑠59:)
• 𝛾 ∈ (0,1) is discount factor



MDP 𝑆, 𝐴, 𝑇, 𝑅
Optimal policy 𝜋∗: policy that 
maximizes 

𝑉F 𝑠G =<
HIG

J#@
𝐸[𝑅(𝑠H, 𝜋 𝑠H, 𝑡 , 𝑠HK@)

• For infinite horizon, discounted 
reward MDP, optimal policy 𝜋∗(𝑠) is 
stationary (independent of 𝑡)

• Optimal value 𝑉 𝑠 = 𝑉F∗(𝑠): value 
corresponding to optimal policy

Robot navigation



Value Iteration Algorithm

Dynamic programming algorithm for solving MDPs
Let 𝑉(𝑠, 𝑇) denote the optimal value at 𝑠 when horizon is 𝑇, 
initialized with 𝑉 𝑠, 0 = 𝑣T .
Then

𝑉 𝑠, 𝑇 = max
#
𝐸[𝑅 𝑠, 𝑎, 𝑠U + 𝑉 𝑠U, 𝑇 − 1 ]

= max
#
4

TU
𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠U + 𝑉 𝑠U, 𝑇 − 1 )



As message passing on a graph
• Node at each state 𝑠, initialized to 𝑉 𝑠, 0 = 𝑣L
• Utilize |𝐴| ‘heads’, one for each action 𝑎
• repeat 𝑇 iterations

for each action 𝑎 of each state 𝑠 (in parallel)
Collect 𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠M + 𝑉 𝑠M ) from all  𝑠′ to 𝑎 at 𝑠

if 𝑝 𝑠′|𝑎, 𝑠 non-zero
Sum all messages 

for each node 𝑠 (in parallel)
Collect message from its corresponding actions 𝑎
Take the maximum of the messages

[Fig by waldoalvarez CC BY-SA 4.0 ]

𝑉(𝑠, 𝑇) = max
,
T

HA
𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠A + 𝑉 𝑠A, 𝑇 − 1 )



Robot navigationShortest path example
• Deterministic transition (only one 

next state with prob 1 from each 
action)

• Initialize 𝑉 𝑠, 0 = 0 for goal state, 
init to −∞ for other states

• Self loop with 0 reward at goal state 
for all actions

• Reward −𝑤%* for moving from 𝑖 to 𝑗, 
−∞ if no edge between the two 
nodes

• Value iteration is Bellman-Ford
shortest path algorithm



After 𝑘 iterations, values at each 
node is the value of the (-ve) 
shortest path from the node to the 
goal, reachable within 𝑘 steps. 

Robot navigation

At initialization

−∞ −∞

−∞ −∞ −∞

−∞ −∞



After 𝑘 iterations, values at each 
node is the value of the (-ve) 
shortest path from the node to the 
goal, reachable within 𝑘 steps. 

−∞ −𝟏

−∞ −∞ −𝟏

−∞ −∞

Robot navigation

After 1 iteration



After 𝑘 iterations, values at each 
node is the value of the (-ve) 
shortest path from the node to the 
goal, reachable within 𝑘 steps. 

−𝟐 −𝟏

−∞ −𝟐 −𝟏

−∞ −𝟐

Robot navigation

After 2 iterations



For the infinite horizon discounted case, the dynamic 
programming equation (Bellman equation) is

𝑉 𝑠 = max
#
𝐸[𝑅 𝑠, 𝑎, 𝑠U + 𝛾𝑉 𝑠U ]

= max
#
4

TU
𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠U + 𝛾𝑉 𝑠U )

Same value iteration algorithm with message changed to
𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠U + 𝛾𝑉 𝑠U )

Converges to the optimal value function



Convergence of Value Iteration

Derivation

The optimal value function 𝑉(𝑠) satisfies Bellman’s principle of optimality
𝑉 𝑠 = max

,
T

HA
𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠A + 𝛾𝑉 𝑠A )

The Bellman update 𝐵 in value iteration transforms 𝑉D to 𝑉DG! as follows
𝑉DG! 𝑠 = max

,
T

HA
𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠A + 𝛾𝑉D 𝑠A )

We denote this as 𝑉DG! = 𝐵𝑉D. 
The optimal value function is a fixed point of this operator 𝑉 = 𝐵𝑉. 
The Bellman update is a contraction (for the max norm), i.e.

𝐵𝑉! − 𝐵𝑉# ≤ 𝛾 𝑉! − 𝑉#



From Bellman’s equation, we have 𝑉 = 𝐵𝑉 for the optimal value 
function 𝑉.
Applying 𝑉A = 𝐵𝑉A$, repeatedly and using contraction property 
𝐵𝑉, − 𝐵𝑉V ≤ 𝛾 𝑉, − 𝑉V we have

𝑉A − 𝑉 = 𝐵𝑉A$, − 𝐵𝑉 ≤ 𝛾 𝑉A$, − 𝑉 ≤ 𝛾A 𝑉W − 𝑉
Distance converges exponentially to 0 for any initial value 𝑉W



Outline

• Graph Neural Networks and Attention Networks



Graph Neural Networks
• Many effective graph neural networks (GNN): 

GCN, GIN, …
• Message passing neural networks 

(MPNN)1: general formulation for GNNs as 
message passing algorithms.

• Input: 𝐺 = (𝑉, 𝐸), node attributes vectors 𝑥% , 𝑖 ∈ 𝑉,  
edge attribute vectors 𝑥%* , 𝑖, 𝑗 ∈ 𝐸

• Output: Label or value for graph classification or 
regression, or a label/value for each node in 
structured prediction

1 Gilmer, Justin, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. "Neural message 
passing for quantum chemistry." In International conference on machine learning, pp. 1263-1272. PMLR, 2017

v1

v2

v3

𝑥!

𝑥"

𝑥#
𝑥!#

𝑥#!

𝑥"#

𝑥!"



MPNN pseudocode
Initialization: ℎ!W = 𝑥! for each 𝑣! ∈ 𝑉
for layers ℓ = 1,… , 𝑑

for every edge 𝑖, 𝑗 ∈ 𝐸 (in parallel)
𝑚!"
X = 𝑀𝑆𝐺ℓ(ℎ!ℓ$,, ℎ"ℓ$,, 𝑣! , 𝑣" , 𝑥!")

for every node 𝑣! ∈ 𝑉 (in parallel)
ℎ!ℓ = 𝑈𝑃ℓ {𝑚!"

X : 𝑗 ∈ 𝑁(𝑖) , ℎ!ℓ$,)
return ℎ!Z for every 𝑣! ∈ 𝑉 or 𝑦 = 𝑅𝐸𝐴𝐷( ℎ!Z: 𝑣! ∈ 𝑉 )

• 𝑀𝑆𝐺ℓ is arbitrary function, usually a neural net 
• 𝑈𝑃ℓ aggregrates the messages from neighbours (usually with a set 

function) and combine with node embedding 
• 𝑅𝐸𝐴𝐷 is a set function for graph classification or regression tasks

𝑥"

v1

v2

v3

𝑥!

𝑥#
𝑥!#

𝑥#!

𝑥"#

𝑥!"



GNN properties
If depth and width are large enough, message 
functions 𝑀𝑆𝐺ℓ and update functions 𝑈𝑃ℓ are 
sufficiently powerful, and nodes can uniquely 
distinguish each other, then the MPNN is 
computationally universal1

• Equivalent to LOCAL model in distributed algorithms
• Can compute any function computable with respect to 

the graph and attributes (just send all information, 
including graph structure, to a single node, then 
compute there).

1 Loukas, Andreas. "What graph neural networks cannot learn: depth vs width.” ICLR 2020

Notation
Depth: 
number of 
layers

Width: largest 
embedding 
dimension



Example: 

𝑷 =
0 0 1
1
0

0
1

0
0
, 𝑨 =

1 2 3
4
7

5
8

6
9

𝑷 permutes vertices 1,2,3 → (3,1,2)

𝑷𝑨 swap the rows
0 0 1
1
0

0
1

0
0

1 2 3
4
7

5
8

6
9

= 
7 8 9
1
4

2
5

3
6

𝑷𝑨 𝑷J swap the columns after that
7 8 9
1
4

2
5

3
6

0 1 0
0
1

0
0

1
0

= 
9 7 8
3
6

1
4

2
5

When using graph neural 
networks, we are often interested 
in permutation invariance and 
equivariance
Given an adjacency matrix 𝑨, a 
permutation matrix 𝑷, and 
attribute matrix 𝑿 containing the 
attributes 𝑥; on the 𝑖-th row

• Permutation invariance: 
𝑓 𝑷𝑨𝑷𝑻, 𝑷𝑿 = 𝑓(𝑨, 𝑿)

• Permutation equivariance: 
𝑓 𝑷𝑨𝑷𝑻, 𝑷𝑿 = 𝑷𝑓(𝑨, 𝑿)



If 𝑀𝑆𝐺ℓ does not depend on node 
ids 𝑣; , 𝑣8, MPNN is permutation 
invariant and equivariant for any 
permutation matrix 𝑷, 
𝑀𝑃𝑁𝑁 𝑷𝑨𝑷𝑻, 𝑷𝑿 = 𝑷𝑀𝑃𝑁𝑁(𝑨, 𝑿)

• However, lose approximation 
power if messages do not depend 
on node ids – cannot distinguish 
some graph structures

• Discrimination power at most as 
powerful as the 1-dimensional 
Weisfeiler-Lehman (WL) graph 
isomorphism test, which cannot 
distinguish certain graphs

• Graph isomorphism network (GIN)1
as powerful as 1-WL

MPNN pseudocode
Initialization: ℎ(7 = 𝑥( for each 𝑣( ∈ 𝑉
for layers ℓ = 1,… , 𝑑

for every edge 𝑖, 𝑗 ∈ 𝐸 (in parallel)
𝑚(#
< = 𝑀𝑆𝐺ℓ(ℎ(ℓ>:, ℎ#ℓ>:, 𝑣( , 𝑣# , 𝑥(#)

for every node 𝑣( ∈ 𝑉 (in parallel)
ℎℓ
ℓ = 𝑈𝑃( {𝑚(#

< : 𝑗 ∈ 𝑁(𝑖) , ℎ(ℓ>:)
return ℎ(? for every 𝑣( ∈ 𝑉 or 𝑦 = 𝑅𝐸𝐴𝐷(m
n

ℎ(?: 𝑣( ∈
𝑉 )

1 Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. "How powerful are graph neural networks?" ICLR 2019



Drug Discovery

Molecules naturally represented as 
graphs
GNNs commonly used for 
predicting properties of molecules, 
e.g. whether it inhibits certain 
bacteria, etc.

[Figs on paracetamol by Benjah-bmm27 and Ben 
Mills are in the public domain]



Bellman Ford Shortest Path

for ℓ = 1,… , 𝑑
for 𝑣 ∈ 𝑉 (in parallel)

d ℓ 𝑣 = min
"
𝑑 ℓ − 1 𝑢 + 𝑤(𝑢, 𝑣)

Algorithmic Alignment

Graph Neural Network

for layers ℓ = 1,… , 𝑑
for 𝑣 ∈ 𝑉 (in parallel)

ℎ#ℓ = 𝑈𝑃({𝑀𝐿𝑃 ℎ"ℓ%& , ℎ#ℓ%& , 𝑤(𝑢, 𝑣) }, ℎ#ℓ%&)

1 Xu, Keyulu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka. "What can 
neural networks reason about?.” ICLR 2020

Sample complexity for learning a GNN is smaller for tasks that 
the GNN is algorithmically aligned with1.

d ℓ 𝑣 easy function to 
approximate by 𝑀𝐿𝑃 as 

function of 𝑑 ℓ − 1 𝑢 ,𝑤 .
Same 𝑀𝐿𝑃 shared by all nodes, 

good inductive bias, so low 
sample complexity

In contrast, learning entire for loop 
with a single function requires 

higher sample complexity



Alignment of GNN and VI 

1 Tamar, Aviv, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. "Value iteration networks.” NeurIPS 2016

Value iteration algorithm for MDPs can be represented in a network 
form – value iteration network (VIN)1.
• GNN well aligned with value iteration

Value Iteration
for ℓ = 1,… , 𝑑

for 𝑣 ∈ 𝑉 (in parallel)
𝒱(𝑣, ℓ) = max

+
∑@ 𝑝 𝑢|𝑎, 𝑣 (𝑅 𝑣, 𝑎, 𝑢 + 𝒱 𝑢, ℓ − 1 )

Graph Neural Network
for layers ℓ = 1,… , 𝑑

for 𝑣 ∈ 𝑉 (in parallel)
ℎAℓ = 𝑈𝑃({𝑀𝐿𝑃 ℎ@ℓ>:, ℎAℓ>:, {𝑝 𝑢|𝑎, 𝑣 , 𝑅 𝑣, 𝑎, 𝑢 } }, ℎAℓ>:)



1 Karkus, Peter, David Hsu, and Wee Sun Lee. "QMDP-net: Deep learning for planning under partial observability." 
NeurIPS 2017

Value Iteration
for ℓ = 1,… , 𝑑

for 𝑣 ∈ 𝑉 (in parallel)
𝒱(𝑣, ℓ) = max

'
∑" 𝑝 𝑢|𝑎, 𝑣 (𝑅 𝑣, 𝑎, 𝑢 + 𝒱 𝑢, ℓ − 1 )

Example: robot navigation 
using a map, using VIN1

• The transition 𝑝 𝑢|𝑎, 𝑣 and 
reward 𝑅 𝑣, 𝑎, 𝑢 function 
may also need to be learned, 
instead of being provided.

• Message passing structure 
suggests 

• represent transition and 
reward separately, learned as 
function of image

• use as input to same function 
at all states



1 Lee, Lisa, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing, and Ruslan Salakhutdinov. "Gated path 
planning networks.” ICML 2018.

GNN well aligned with value iteration: 
may work well here
VIN has stronger inductive bias: encode 
value iteration equations directly 

• Action heads: for each action, take 
weighted sum from neighbours

• Then max over actions
GNN potentially more flexible: also 
aligned other similar algorithms, 
particularly dynamic programming 
algorithms

• May work better if MDP assumption is not 
accurate

• Optimization may be easier for some 
types of architectures1



Alignment of GNN and Graphical Model 
Algorithms Mean field

repeat 𝑇 iterations
for each variable 𝑗 compute (serially or in parallel)

𝑚'((𝑥() = ∑𝒙!\+"∏,∈. ' ,,0(
. 𝑞, 𝑥, ln 𝜓' 𝒙' for 𝑎 ∈ 𝑁 𝑗 in parallel

𝑞( 𝑥( = &
1"
# exp ∑'∈. ( 𝑚'( 𝑥(

1 Dai, Hanjun, Bo Dai, and Le Song. "Discriminative embeddings of latent variable models for structured data." ICML 2016.

When all potential functions are pairwise 𝜓# 𝒙# = 𝜓!,"(𝑥! , 𝑥"), then 
𝑚#"(𝑥") is a function of only 𝑞! 𝑥! .

• Can send message directly from variable to variable without combining 
the messages at factor nodes

• Can interpret node embedding as feature representation of belief and 
learn a mapping from one belief to another as a message function1

• GNN algorithmically well aligned with mean field for pairwise potential functions
• Similarly well aligned with loopy belief propagation for pairwise potential



What about with higher order potentials 
𝜓# 𝒙# where 𝒙# consists of 𝑛# variables?

• In tabular representation, size of 𝜓, 𝒙,
grows exponentially with 𝑛,, so even loopy 
belief propagation is not efficient

• But if 𝜓, 𝒙, is low-ranked tensor, then loopy 
belief propagation can be efficiently 
implemented1,2

• Represent 𝜓+ 𝒙+ as a tensor decomposition (CP 
decomposition), where 𝑘+ is the rank
𝜓+ 𝒙+ = ∑(6:

B2 𝑤+,:( (𝑥+,:)𝑤+,D( (𝑥+,D)…𝑤+,E2
( 𝑥+,E2

• Factor graph neural network (FGNN), which 
passes messages on a factor graph is well 
aligned with this

1 Dupty, Mohammed Haroon, and Wee Sun Lee. "Neuralizing Efficient Higher-order Belief Propagation." arXiv 
preprint arXiv:2010.09283 (2020)
2 Zhang, Zhen, Fan Wu, and Wee Sun Lee. "Factor graph neural network." NeurIPS 2020.

𝑥!

𝑥"𝑥# 𝑥$

𝐴𝐵

𝐶



Implement message functions
𝑛1# 𝑥1 = 2

Z∈&(1)\\

𝑚Z1(𝑥1)

𝑚#1 𝑥1 = ∑
𝒙$\]&

𝜓# 𝒙# 2
,∈&(#)\^

𝑛1,(𝑥,)

using	

𝜓# 𝒙# =)
ℓ.$

_$
2
,∈&(#)

𝑤#,,ℓ (𝑥,)

𝑚#! 𝑥! = ∑
𝒙`\+a

𝜓# 𝒙# '
"∈G(#)\z

𝑛!"(𝑥")

=+
𝒙`\+a

+
ℓC,

{`
'
"∈G(#)

𝑤#,"ℓ (𝑥") '
"∈G(#)\z

𝑛!"(𝑥")

=+
ℓC,

{`
𝑤#,!ℓ (𝑥!) +

𝒙`\+_!

'
"∈G(#)\z

𝑤#,"ℓ (𝑥")𝑛!"(𝑥")

=+
ℓC,

{`
𝑤#,!ℓ (𝑥!) '

"∈G(#)\z

+
+b

𝑤#,"ℓ (𝑥")𝑛!"(𝑥")



Matrix notation
• 𝑚#1 vector of length 𝑛1
• 𝑛1# vector of length 𝑛1
• 𝑤#,1ℓ vector of length 𝑛1
• 𝑾#1 matrix of 𝑘#rows where each 

row is (𝑤#,1ℓ )c
• ⊙ element-wise multiplication

𝑛%, 𝑥% = ∏-∈/(%)\3𝑚-%(𝑥%)

𝑚,% 𝑥% =T
ℓ;!

`!
𝑤,,%ℓ (𝑥%) F

*∈/(,)\6

T
51

𝑤,,*ℓ (𝑥*)𝑛%*(𝑥*)

In matrix notation
𝑚7; = 𝑾7;

J ⊙8∈=(7)\Z𝑾78𝑛87
𝑛;7 =⊙[∈=(;)\\ 𝑚[;

To make factor and variable 
messages symmetric

𝑚7;
M =⊙8∈=(7)\Z𝑾78𝑛87

𝑛;7 =⊙[∈=(;)\\𝑾[;
J𝑚[;

M

Matrix vector multiplication 
followed by product aggregation.



Factor graph provides an easy way to 
specify dependencies, even higher 
order ones.
Loopy belief propagation can be 
approximated with the following 
message passing equations

𝑚#! =⊙"∈G(#)\z𝑾#"𝑛"#
𝑛!# =⊙}∈G(!)\~𝑾}!

� 𝑚}!

Optimizes Bethe free energy if it 
converges.

• Uses low rank approximation
for potential functions.

• Increasing number of rows 
of 𝑾,% increases rank 
of tensor decomposition
approximation.



Neuralizing Loopy Belief Propagation
Alignment shows that a neural network with small number of 
parameters can approximate an algorithm, smaller sample 
complexity in learning: analysis.
Can also use the ideas in design. 
Neuralizing the algorithm

• Start with the network representing the algorithm to capture the inductive 
bias. 

• Modify the algorithm, e.g. add computational elements to enhance 
approximation capability, while mostly maintaining the structure to keep 
the inductive bias. 



• Start with an algorithm in network form, e.g. 
𝑚,% =⊙*∈/(,)\6𝑾,*𝑛*,
𝑛%, =⊙-∈/(%)\3𝑾-%

E𝑚-%

• Add network elements to potentially make the network 
more powerful – enlarge the class of algorithms that can be 
learned, e.g.

𝑚,% = 𝑀𝐿𝑃(⊙*∈/(,)\6𝑾,*𝑛*,)
𝑛%, = 𝑀𝐿𝑃(⊙-∈/(%)\3𝑾-%

E𝑚-%)
• It is usually simpler to keep messages only on nodes 

instead of on edges, simplify while keeping message 
passing structure. Can also change aggregrator, e.g. to 
sum, max, etc. Works well in practice

𝑚, = 𝑀𝐿𝑃(𝐴𝐺𝐺*∈/(,)𝑾,*𝑛*)
𝑛% = 𝑀𝐿𝑃(𝐴𝐺𝐺-∈/(%)𝑾-%

E𝑚-)

𝑥!

𝑥"

𝑥#

𝑥$

𝐴

𝐵

𝐶

Message passing neural net on 
factor graph



Attention Network



Distributed Representation of Graphs and 
Matrices 
A graph can be represented using an adjacency matrix
A matrix 𝐴, in turn can be factorized 𝐴 = 𝑈𝑉E

In factorized form, 𝑢%E𝑣* = 𝐴%*
• Entry 𝑖, 𝑗 of matrix 𝐴 is the inner product of row 𝑖 of matrix 𝑈 with row 𝑗 of matrix 𝑉
• Node 𝑖 of graph has an embeddings 𝑢( , 𝑣( such that the value of edge (𝑖. 𝑗) can be 

computed as 𝑢(F𝑣#
• Distributed representation of graph – information distributed to the nodes

𝐴 = 𝑈𝑉E 𝐴%* = 𝑢%E𝑣* =T
`

𝑢%`𝑣*`

𝑎!! 𝑎!# 𝑎!"
𝑎#! 𝑎## 𝑎#"
𝑎"! 𝑎"# 𝑎""

=
𝑢!! 𝑢!#
𝑢#! 𝑢##
𝑢"! 𝑢"#

𝑣!! 𝑣#! 𝑣"!
𝑣!# 𝑣## 𝑣"#

With distributed 
representation, using a 
subset of embeddings 𝑢% , 𝑣%
gives representation of 
subgraph! 



Attention Network
Using matrix factorization, we can show 
that the transformer-type attention 
network is well aligned with value iteration 
for MDP 
In the attention network, we have a set of 
nodes, each of which has an embedding 
as input, and the same operations 
(implemented with a network) are applied 
at each node in a layer.

Multi-Head 
Attention

Add

Feedforward

Add



Multi-head attention
Let embedding at node 𝑖 be 𝑥`

• Each node has 𝐾 attention heads
• Each attention head has weight 

matrices: query weights 𝑾a used to 
compute query 𝑞% = 𝑾a𝑥%, key 
weights 𝑾b used to compute key 
𝑘% = 𝑾b𝑥% and value weights 𝑾c
used to compute 𝑣% = 𝑾c𝑥%.

• Compute 𝑎%* = 𝑞%E𝑘* with all other 
nodes 𝑗. Compute probability vector 
𝑝%* for all 𝑗 using the softmax function 
𝑝%* = 𝑒,"1/∑ℓ 𝑒,"ℓ. The output of the 
head is a weighted average of all the 
values ∑* 𝑝%*𝑣*.

𝑥'

𝑞' = 𝑾(𝑥'𝑣' = 𝑾)𝑥'𝑘' = 𝑾*𝑥'𝑘#

𝑎'# = 𝑞'+𝑘#

Softmax

… .

Weighted Average

𝑥#

Concatenate Across K Heads

Projection

Output of Multi-Head Attention



Output of multi-head attention
• Concatenate outputs of 𝐾 attention heads 
• Project back to vector of the same length 
• Passed to a feedforward network through a 

residual operation (added to 𝑥%)

𝑥'

𝑞' = 𝑾(𝑥'𝑣' = 𝑾)𝑥'𝑘' = 𝑾*𝑥'𝑘#

𝑎'# = 𝑞'+𝑘#

Softmax

… .

Weighted Average

𝑥#

Concatenate Across K Heads

Projection

Output of Multi-Head Attention

Multi-Head 
Attention

Add

Feedforward

Add



Alignment of Attention Network 
with Value Iteration

Constructing input 𝑥%
• Use matrix factorization to get a 

distributed representation of the 
log of each transition matrix 
𝐿, = 𝑈,𝑉,E for each action 𝑎 where 
𝐿,[𝑠, 𝑠A] = log 𝑃(𝑠A|𝑠, 𝑎).

• Construct input for node 𝑖, 𝑥%, by 
stacking up 𝐾 + 1 copies of initial 
value 𝑣% followed by embeddings of 
transition matrices

𝑅b%
⋮
𝑅!%
𝑣b%
𝑢b%
⋮
𝑣!%
𝑢!%
𝑣%
⋮
𝑣%

𝐾 + 1 copies of 
initial value 𝑣%

Embeddings of 
transition matrices 
for each action 
for state 𝑖

Reward for each
action for state 𝑖



Constructing input 𝑥%
• Compute expected reward 
𝑅,H = 𝐸[𝑅 𝑠, 𝑎, 𝑠A ] for each action of 
the 𝐾 actions.

• Place expected reward 𝑅,% for each 
action 𝑎 into a single vector input and 
concatenate to the earlier input 
vector. 

𝑅b%
⋮
𝑅!%
𝑣b%
𝑢b%
⋮
𝑣!%
𝑢!%
𝑣%
⋮
𝑣%

𝐾 + 1 copies of 
initial value 𝑣%

Embeddings of 
transition matrices 
for each action 
for state 𝑖

Reward for each
action for state 𝑖



Need to extract out 𝑢7; , 𝑣78 to compute  
𝑝 𝑗 𝑎, 𝑖 = exp(𝑢7;J 𝑣78)

• Setting 𝑊d = [0, 𝐼e , 0] where 𝐼_ is a 𝑘 by 𝑘
identity matrix at the appropriate columns will 
extract 𝑢#1 = 𝑊d𝑥1 as query.

• Similarly can construct 𝑊e to extract 𝑣#, as 
key, allowing softmax of inner product 𝑢#1c 𝑣#, to 
correctly compute transition probabilities.

• Set 𝑊f to extract out the value component 
from 𝑥1

With this construction, output of head 𝑎 is
𝑜7 = ∑8 𝑝 𝑗 𝑎, 𝑖 𝑣8

At each layer of value iteration:
for each action 𝑎 of each state 𝑠 (in parallel)

Collect 𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠3 + 𝑉 𝑠3 ) from all  𝑠′ to 𝑎 at 𝑠 if 𝑝 𝑠′|𝑎, 𝑠 non-zero
Sum all messages 

for each node 𝑠 (in parallel)
Collect message from its corresponding actions 𝑎
Take the maximum of the messages

0
⋮
0

…
⋱
…

0
⋮
0
𝐼`
0
⋮
0

…
⋱
…

0
⋮
0

𝑅b%
⋮
𝑅!%
𝑣b%
𝑢b%
⋮
𝑣!%
𝑢!%
𝑣%
⋮
𝑣%

= 𝑢,%



Output of head 𝑎 is 

𝑜#! =4
"

𝑝 𝑗 𝑎, 𝑖 𝑣"

Concatenate as 𝑜,! …𝑜�! � and 
add to first 𝐾 components of 𝑥! to 
form input to feedforward 
network,

At each layer of value iteration:
for each action 𝑎 of each state 𝑠 (in parallel)

Collect 𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠3 + 𝑉 𝑠3 ) from all  𝑠′ to 𝑎 at 𝑠 if 𝑝 𝑠′|𝑎, 𝑠 non-zero
Sum all messages 

for each node 𝑠 (in parallel)
Collect message from its corresponding actions 𝑎
Take the maximum of the messages

Multi-Head 
Attention

Add

Feedforward

Add
𝑅b%
⋮
𝑅!%
𝑣b%
𝑢b%
⋮
𝑣!%
𝑢!%
𝑣%

𝑣% + 𝑜b%
⋮

𝑣% + 𝑜!%



Feedforward network:
• Subtract 𝑣_𝑖 from 𝑣% + 𝑜,% to get 𝑜,%
• Compute 𝑣%A = max

,
{𝑅,%+𝑜,%}

• Construct output so that adding back 
the input of the feedforward network 
gets 𝑣%Ain the first 𝐾 + 1 positions and 
the original MDP parameters in the 
remaining positions: 
output the value 𝑣%A − (𝑣% + 𝑜,%) as 
first 𝐾 elements and 𝑣%A − 𝑣% as the 
𝐾 + 1st element, 

At each layer of value iteration:
for each action 𝑎 of each state 𝑠 (in parallel)

Collect 𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠3 + 𝑉 𝑠3 ) from all  𝑠′ to 𝑎 at 𝑠 if 𝑝 𝑠′|𝑎, 𝑠 non-zero
Sum all messages 

for each node 𝑠 (in parallel)
Collect message from its corresponding actions 𝑎
Take the maximum of the messages

Multi-Head 
Attention

Add

Feedforward

Add
𝑅b%
⋮
𝑅!%
𝑣b%
𝑢b%
⋮
𝑣!%
𝑢!%
𝑣%

𝑣% + 𝑜b%
⋮

𝑣% + 𝑜!%



Learning



All methods discussed are message passing methods on a graph
• Messages are constructed using operations such as addition, 

multiplication, max, exponentiation, etc.
• Can be represented using network of computational elements
• Usually same network at each graph node

Each iteration of message passing forms a layer
Putting together layers form a deep network

• Different layers can have different parameters, additional flexibility
With appropriate loss functions, can learn using gradient descent if all 
network elements are differentiable: backpropagation

Backpropagation and Recurrent 
Backpropagation



If different layers all have the same parameters, we have a recurrent 
neural network.
For some recurrent networks, the inputs the same at each iteration and 
we are aiming for solution at convergence

• Loopy belief propagation
• Value iteration for discounted MDP
• Some graph neural networks1
• Some tranformer architectures2

Recurrent backpropagation and other optimization methods based on 
implicit functions can be used3

• Constant memory usage 

1 Scarselli, Franco, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. "The graph 
neural network model." IEEE Transactions on Neural Networks, 2008. 
2 Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun. "Deep equilibrium models." NeurIPS 2019
3 Zico Kolter, David Duvenaud, and Matt Johnson, “Deep Implicit Layers - Neural ODEs, Deep Equilibirum Models, 
and Beyond.” NeurIPS 2020 Tutorial http://implicit-layers-tutorial.org/

http://implicit-layers-tutorial.org/


Summary



Message Passing in Machine Learning
We viewed some “classic” message passing algorithms in machine learning 
through variational principles

• Loopy belief propagation
• Mean field
• Value iteration

What optimization problems are they solving?

We relate graph neural networks and attention networks to the “classic” 
message passing algorithms

• Algorithmic alignment (analysis): Can they simulate those algorithms using a small 
network?

• Neuralizing algorithms (design): Can we enhance those algorithms into more 
powerful neural versions
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Appendix



Correctness of Belief Propagation 
on Trees

𝑚,% 𝑥%

𝑻𝒊

𝑏 𝑐

𝑥e

𝑥%

𝑥* 𝑥`

𝑎

𝑚

𝑛%, 𝑥% = F
-∈/(%)\3

𝑚-%(𝑥%)

𝑚,% 𝑥% = ∑
𝒙!\5"

𝜓, 𝒙, F
*∈/(,)\6

𝑛*%(𝑥*)

𝑏% 7" ∝ F
,∈/(%)

𝑚,%(𝑥%)

Assume 𝑇% is the subtree along edge 
𝑎, 𝑖 , rooted at 𝑥% and message 𝑚,% 𝑥% is sent 

from 𝑎 to 𝑖. 
After 𝒌 iterations of message passing, the 
message correctly marginalizes away other 
variables in the subtree
𝑚,% 𝑥% = ∑7A∈E"\5"∏,∈E"𝜓,(𝒙,

A )
where 𝑘 is the height of the subtree. 



Assume marginalization correctly 
done for subtrees of height < 𝑘
• Push summation inside product,

can group at subtrees depth 2 
below 𝑎 because of tree structure

• By inductive hypothesis, 
marginalization correct at depth 2 
below

So after 𝑘 iterations of message passing, 
marginalization at height 𝑘 correct

Correctness
Init all messages to all-one vectors. 
Then:

𝑥%

𝑥* 𝑥`

𝑎

𝑚

𝑚,' 𝑥' =1
"!

1
""

1
"#

1
"...

𝜓, 𝑥' , 𝑥# , 𝑥. 𝜓/ … …

𝑏 𝑐

𝑥e

𝑥%

𝑥* 𝑥`

𝑎

𝑚

𝑚,' 𝑥' =1
"!

1
""

𝜓, 𝑥' , 𝑥# , 𝑥. 1
"#

1
"...

𝜓/ … …1
"…

𝜓1 … …

𝑏 𝑐

𝑥e

Compute 
at 𝑚/# 𝑥#
instead



Mean Field Update Derivation
In mean field 
approximation, we find 
𝑞 that minimizes the 
variational free energy 

𝐹 𝑞 = ∑' 𝑞 𝒙 𝐸 𝒙 +
∑' 𝑞 𝒙 ln 𝑞(𝒙)

when 𝑞 is restricted to a 
factored form

𝑞Bc 𝑥 = ∏;I@
= 𝑞;(𝑥;).

Consider the dependence on a single variable 𝑞,(𝑥,) with all other 
variables fixed

𝐹 𝑞 ='
𝒙
(
1.$

&

𝑞1(𝑥1) 𝐸 𝒙 +'
𝒙
(
1.$

&

𝑞1(𝑥1) ln(
1.$

&

𝑞1(𝑥1)

='
-2
𝑞,(𝑥,)'

𝒙\]2
(
1i,

&

𝑞1(𝑥1) 𝐸 𝒙 +'
-2
𝑞, 𝑥, ln 𝑞,(𝑥,) + 𝑐𝑜𝑛𝑠𝑡

='
-2
𝑞, 𝑥, ln

1
𝑝,5 𝑥,

+ 𝑐𝑜𝑛𝑠𝑡 +'
-2
𝑞, 𝑥, ln 𝑞,(𝑥,) + 𝑐𝑜𝑛𝑠𝑡

where 𝑝,5 𝑥, =
1
𝑍,′
exp −'

𝒙\]2
(
1i,

&

𝑞1 𝑥1 𝐸 𝒙

= 𝐾𝐿(𝑞,||𝑝,5) + 𝑐𝑜𝑛𝑠𝑡

which is minimized at 𝑞, 𝑥, = 𝑝,5 𝑥, .



Variational Free Energy for Trees

As 𝑞G 𝑥G also appears on the numerator, we 
can write the distribution as

∏+ 𝑞+(𝒙+)
∏( 𝑞( 𝑥( ?>:

Multiplying the numerator and denominator by 
∏( 𝑞((𝑥() and observing that 
∏#∏1∈&(#) 𝑞1(𝑥1) = ∏( 𝑞( 𝑥( ? gives the 
required expression

𝑥!

𝑥"𝑥# 𝑥$

𝐴𝐵

𝐶

We can write a tree distribution as
∏+ 𝑞+ 𝒙+ ∏( 𝑞((𝑥()
∏+∏1∈&(#) 𝑞1(𝑥1)

To see this, we can write a tree distribution as

𝑞G 𝑥G :
+

𝑞+(𝒙𝒂|𝑝𝑎 𝒙+ )

where 𝑥Gis the root, and 𝑝𝑎 𝒙+ is the parent 
variable for factor 𝑎 in the tree
We write

𝑞+ 𝒙𝒂 𝑝𝑎 𝒙+ =
𝑞+(𝒙+)
𝑞H+(𝒙𝒂)

Each variable appears as a parent 𝑑 − 1 times, 
where 𝑑 is the degree of the variable node, 
except the root which appears 𝑑 times. 



Substituting 

𝑞 𝒙 =
∏7 𝑞7 𝒙7 ∏; 𝑞;(𝑥;)
∏7∏;∈=(7) 𝑞;(𝑥;)

into 
𝐹 𝑞 =<

'
𝑞 𝒙 𝐸 𝒙 +<

'
𝑞 𝒙 ln 𝑞(𝒙)

we get 
𝐹 𝑞

= −<
7I@

B

<
𝒙!
𝑞7 𝒙7 ln 𝜓7 𝒙7 +<

7I@

B

<
𝒙𝒂
𝑞7 𝒙𝒂 ln

𝑞7(𝒙7)
∏;∈=(7) 𝑞;(𝑥;)

+<
;I@

=

<
'"
𝑞; 𝑥; ln 𝑞;(𝑥;)



Belief Propagation as Stationary 
Point of Bethe Free Energy
Consider optimizing Bethe free energy subject to 
constraints described. We form the Lagrangian

𝐿 = 𝐹IJ5KJ +9
+

𝛾+[1 −9
𝒙2

𝑞+ 𝒙𝒂 ] +9
(
𝛾([1 −9

L5

𝑞( 𝑥( ]

+ 9
(
9

+∈*(()
9

L5
𝜆+( 𝑥( [𝑞( 𝑥( −9

𝒙2\'5
𝑞+ 𝒙𝒂 ]

Differentiating with respect to 𝑞((𝑥() and setting to 0
0 = −𝑑( + 1 + ln 𝑞( 𝑥( − 𝛾( +9

+∈* (
𝜆+( 𝑥(

𝑞( 𝑥( ∝ exp −9
+∈* (

𝜆+( 𝑥( =:
+∈*(()

𝑚+((𝑥()

where 𝑑( is the degree of node and 𝑚+((𝑥() =
exp(−𝜆+( 𝑥( )

𝐹34564 𝑞 = 𝑈34564 𝑞 − 𝐻34564(𝑞)

𝑈34564 𝑞 = −1
,78

9

1
"&
𝑞, 𝒙, ln 𝜓, 𝒙,

H34564

= −1
,78

9

1
𝒙𝒂
𝑞, 𝒙𝒂 ln

𝑞, 𝒙,
∏'∈< , 𝑞' 𝑥'

−1
'78

<

1
"(
𝑞' 𝑥' ln 𝑞'(𝑥')



𝐹34564 𝑞 = 𝑈34564 𝑞 − 𝐻34564(𝑞)

𝑈34564 𝑞 = −1
,78

9

1
"&
𝑞, 𝒙, ln 𝜓, 𝒙,

H34564

= −1
,78

9

1
𝒙𝒂
𝑞, 𝒙𝒂 ln

𝑞, 𝒙,
∏'∈< , 𝑞' 𝑥'

−1
'78

<

1
"(
𝑞' 𝑥' ln 𝑞'(𝑥')

Previously: 

𝑞' 𝑥' ∝ exp −1
,∈< '

𝜆,' 𝑥'

Consider optimizing Bethe free energy subject to constraints 
described

𝐿 = 𝐹)jklj +'
#

𝛾#[1 −'
𝒙$

𝑞# 𝒙𝒂 ] +'
1
𝛾1[1 −'

-&

𝑞1 𝑥1 ]

+ '
1
'

#∈&(1)
'

-&
𝜆#1 𝑥1 [𝑞1 𝑥1 −'

𝒙$\]&
𝑞# 𝒙𝒂 ]

Differentiating with respect to 𝑞# 𝒙𝒂 and setting to 0
0 = − ln𝜓# 𝒙# + 1 + ln 𝑞# 𝒙𝒂
− ln(

1∈& #
𝑞1 𝑥1 −𝛾# −'

1∈& #
𝜆#1 𝑥1

= − ln𝜓# 𝒙# + ln 𝑞# 𝒙𝒂 + 𝑐𝑜𝑛𝑠𝑡
+'

1∈&(#)
'

#∈&(1)
𝜆#1(𝑥1) −'

1∈& #
𝜆#1 𝑥1

𝑞# 𝒙𝒂 ∝ 𝜓# 𝒙# exp −'
1∈& #

'
m∈& 1 \\

𝜆m1 𝑥1

= 𝜓# 𝑥# (
1∈&(#)

(
m∈&(1)\\

𝑚m1(𝑥1)

where 𝑚m1 𝑥1 = exp(−𝜆m1 𝑥1 )



For ∑7!\6 𝑞,(𝑥,) to be consistent with 𝑞%(𝑥%) = ∏f∈/(%)𝑚f%(𝑥%), 
we get the belief propagation equation

𝑚,% 𝑥% =T
7!\6

𝜓, 𝑥, F
*∈/(,)\6

F
f∈/(*)\3

𝑚f*(𝑥*)

Stationary points of the Bethe free energy are fixed points of loopy belief 
propagation updates

Previously: 

𝑞% 𝑥% =F
f∈/(%)

𝑚f%(𝑥%)

𝑞, 𝒙𝒂 = 𝜓, 𝑥, ∏*∈/(,)∏ f∈/(*)\3𝑚f*(𝑥*)

[Fig from Yedidia et. al. 2005]



Bellman Update Contraction
We show that Bellman update is a contraction 

𝐵𝑉! − 𝐵𝑉# ≤ 𝛾 𝑉! − 𝑉#

First we show that for any two functions 𝑓 𝑎 and 𝑔(𝑎)
|max
,

𝑓 𝑎 − max
,
𝑔 𝑎 | ≤ max

,
|𝑓 𝑎 − 𝑔 𝑎 |

To see this, assume consider the case where max
,
𝑓 𝑎 ≥ max

,
𝑔(𝑎). Then

|max
,
𝑓 𝑎 − max

,
𝑔 𝑎 | = max

,
𝑓 𝑎 − max

,
𝑔 𝑎

= 𝑓 𝑎∗ −max
,
𝑔 𝑎

≤ 𝑓 𝑎∗ − 𝑔 𝑎∗
≤ max

,
|𝑓 𝑎 − 𝑔 𝑎 |

where 𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥, 𝑓(𝑎). The case where max
,
𝑔 𝑎 ≥ max

,
𝑓 𝑎 is similar. 



Now, for any state 𝑠
𝐵𝑉! 𝑠 − 𝐵𝑉# 𝑠

= �

�

𝑚𝑎𝑥, T
HA

𝑃 𝑠A 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠A + 𝛾𝑉! 𝑠′

− 𝑚𝑎𝑥, T
HA

𝑃 𝑠A 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠A + 𝛾𝑉# 𝑠′

≤ 𝑚𝑎𝑥, T
H2
𝑃 𝑠A 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠A + 𝛾𝑉! 𝑠′ −T

H2
𝑃 𝑠A 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠A + 𝛾𝑉# 𝑠′

= 𝛾𝑚𝑎𝑥, T
H2
𝑃 𝑠A 𝑠, 𝑎 (𝑉! 𝑠′ − 𝑉# 𝑠′ )

= 𝛾 T
H2
𝑃(𝑠A|𝑠, 𝑎∗)(𝑉! 𝑠′ − 𝑉# 𝑠′ )

where we have use |max
,

𝑓 𝑎 − max
,
𝑔 𝑎 | ≤ max

,
|𝑓 𝑎 − 𝑔 𝑎 |.



Finally, we show contraction
𝐵𝑉, − 𝐵𝑉V = max

T
|𝐵𝑉, 𝑠 − 𝐵𝑉V 𝑠 |

≤ 𝛾max
T

4
Th
𝑃 𝑠U 𝑠, 𝑎∗ 𝑉, 𝑠U − 𝑉V 𝑠U

≤ 𝛾max
T

𝑉, 𝑠 − 𝑉V 𝑠
= 𝛾 𝑉, − 𝑉V


