
Wee Sun Lee
School of Computing

National University of Singapore
leews@comp.nus.edu.sg

Neural Information Processing Systems December 2021

Message Passing

Machine learning using distributed
algorithm on graph 𝐺 = 𝑉, 𝐸 .
Node 𝑣! ∈ 𝑉 do local computation,
depends only on information at 𝑣!,
neighbours, and incident edges 𝑒!" ∈ 𝐸.
Information sent through 𝑒!" to 𝑣" as
message 𝑚!".

vi

vk

vj

mij

Why Message Passing Algorithms?

Effective in practice!
• Graph neural networks
• Transformer
• Probabilistic graphical model inference
• Value iteration for Markov decision process

Potentially easier to parallelize.

Plan for Tutorial
Cover better understood, more “interpretable” models and algorithms

• Probabilistic graphical models (PGM), inference algorithms
• Markov decision process (MDP), decision algorithm
What do the components of the models represent?
What objective functions are the algorithms are optimizing for?

Discuss more flexible, less “interpretable” methods
• Graph neural networks
• Attention networks, transformer

Connect to PGM and MDP, help understand the inductive biases.

Outline

• Probabilistic Graphical Models

Probabilistic Graphical Model
Focus on Markov random fields
𝑁 random variables {𝑋!, 𝑋", … , 𝑋#}
𝑝 𝒙 = 𝑝(𝑋! = 𝑥!, 𝑋" = 𝑥", … , 𝑋$ = 𝑥$)
factors into a product of functions

𝑝 𝒙 =
1
𝑍
/
%

𝜓%(𝒙%)

• 𝑀 non-negative compatibility or potential
functions 𝜓! , 𝜓, … , 𝜓"

• 𝑥#, the argument of 𝜓#, is a subset of
𝑥$, 𝑥%, … , 𝑥&

• 𝑍, the partition function, is the
normalizing constant

Graphical representation using factor graph:
bipartite graph, each factor node connected
to variable nodes that it depends on
$
'
𝜓! 𝑥$, 𝑥(𝜓) 𝑥$, 𝑥%, 𝑥* 𝜓+(𝑥*)

𝑥!

𝑥"

𝑥#

𝑥$

𝐴

𝐵

𝐶

When compatibility functions always positive, can write

𝑝 𝒙 =
1
𝑍
/
#

𝜓#(𝒙#)

=
1
𝑍
𝑒$%(𝒙)

where

𝐸 𝒙 = −4
#

)

ln 𝜓# 𝒙#

is the energy function.

Error Correcting Codes

[Fig from http://www.inference.org.uk/mackay/codes/gifs/]

𝑥!

𝑥"

𝑥#

𝑥$

𝐴

𝐵

𝐶

𝑦!

𝑦"

𝑦#

𝑦$

𝑦% observed,
corrupted
version of 𝑥%

𝜓& 𝑥!, 𝑥", 𝑥$ = 11 if 𝑥!⨁𝑥#⨁𝑥$ = 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Codeword

Parity bits

MAP, Marginals, and Partition Function
Maximum a posteriori (MAP):
find a state 𝒙 that maximizes 𝑝 𝒙

• Equivalently minimizes the energy 𝐸 𝒙

Marginal: probabilities for individual variable

𝑝! 𝑥! = ∑𝒙\+' 𝑝 𝒙

Partition function: Compute the normalizing
constant

Z =4
𝒙
/
#

𝜓#(𝒙#)

Semantic Segmentation
In conditional random field (CRF),
the conditional distribution
𝑝 𝒙 𝑰 = ,

-(𝑰)
𝑒$%(𝒙|𝑰) is modeled.

• For semantic segmentation 𝑰 is the
image and 𝒙 is the semantic class label.
𝐸 𝒙|𝑰 = ∑%𝜙(𝑥%|𝑰 + ∑%)*𝜙+ 𝑥% , 𝑥* 𝑰)

[Figs from Zheng et. al. 2015]

Message passing algorithm
Sum product computes the marginals

𝑛%, 𝑥% = F
-∈/(%)\3

𝑚-%(𝑥%)

𝑚,% 𝑥% = ∑
𝒙!\5"

𝜓, 𝒙, F
*∈/(,)\6

𝑛%*(𝑥*)

𝑏% 7" ∝ F
,∈/(%)

𝑚,%(𝑥%)

Max product solves the MAP problem: just replace
sum with max in message passing
Works exactly on trees, dynamic
programming

Belief Propagation
𝑥!

𝑥"

𝑥#

𝑥$

𝐴

𝐵
𝐶

𝑥!

𝑥"𝑥# 𝑥$

𝐴𝐵

𝐶

tree

Correctness 𝐷

𝐷

Every variable and factor nodes compute messages in parallel
at each iteration

• After 𝑂(𝐷) iterations, where 𝐷 is the diameter of the tree, all messages
and all marginals are correct.

Suffices to pass messages from leaves to the root and back
• More efficient for serial computation

Belief Propagation on Trees

Loopy Belief Propagation
Belief propagation can also be applied to general probabilistic graphical
models
Often called loopy belief propagation
As a message passing algorithm:

Init all messages 𝑛%, , 𝑚,% to all-one vectors
repeat 𝑇 iterations

for each variable 𝑖 and factor 𝑎 compute (in parallel)
𝑛%, 𝑥% = ∏-∈/(%)\3𝑚-%(𝑥%) for each 𝑎 ∈ 𝑁(𝑖)
𝑚,% 𝑥% = ∑

𝒙!\5"
𝜓, 𝒙, ∏*∈/(,)\6𝑛%*(𝑥*) for each 𝑖 ∈ 𝑁(𝑎)

return 𝑏% 7" =
!
8"
∏,∈/(%)𝑚,%(𝑥%) for each 𝑖

𝑥!

𝑥"𝑥# 𝑥$

𝐴𝐵

𝐶

Belief propagation may fail
when there are cycles

• May not even converge
• Often works well in practice

when converges

Variational inference ideas
help understand loopy belief
propagation

𝑥!

𝑥"𝑥# 𝑥$

𝐴𝐵

𝐶

𝑛%, 𝑥% = F
-∈/(%)\3

𝑚-%(𝑥%)

𝑚,% 𝑥% = ∑
𝒙!\5"

𝜓, 𝒙, F
*∈/(,)\6

𝑛%*(𝑥*)

𝑏% 7" ∝ F
,∈/(%)

𝑚,%(𝑥%)

Variational Principles

View message passing algorithms through lens of variational
principles
• A variational principle solves a problem by viewing the solution

as an extremum (maximum, minimum, saddle point) of a
function or functional

• To understand or “interpret” an algorithm, ask “what objective
might the algorithm implicitly be optimizing for?”

In standard variational inference,
we approximate the Helmholtz
free energy

𝐹! = − ln𝑍
𝑍 = ∑𝒙 𝑒#$(𝒙) , 𝑝(𝒙) = 𝑒#$(𝒙)/𝑍

by turning it into an optimization
problem

For target belief 𝑝 and arbitrary belief 𝑞
𝐹! = 𝐹 𝑞 − 𝐾𝐿(𝑞||𝑝)

where 𝐹 𝑞 is the variational free
energy
𝐹 𝑞 =<

'
𝑞 𝒙 𝐸 𝒙 +<

'
𝑞 𝒙 ln 𝑞(𝒙)

and 𝐾𝐿(𝑞||𝑝) is the Kullback Lieber
divergence between 𝑞 and 𝑝

𝐾𝐿(𝑞| 𝑝 =<
'
𝑞 𝒙 ln

𝑞 𝒙
𝑝 𝒙

Variational Inference

Derivation:
ln 𝑝 𝑥 = −𝐸 𝑥 − ln 𝑍

𝐹! = − ln 𝑍 =1
"

𝑞 𝑥 𝐸 𝑥 +1
"

𝑞 𝑥 ln 𝑝 𝑥

=1
"

𝑞 𝑥 𝐸 𝑥 +1
"

𝑞 𝑥 ln 𝑝 𝑥 + 1
"

𝑞 𝑥 ln 𝑞 𝑥 −1
"

𝑞 𝑥 ln 𝑞 𝑥

=1
"

𝑞 𝑥 𝐸 𝑥 + 1
"

𝑞 𝑥 ln 𝑞 𝑥 −1
"

𝑞 𝑥 ln 𝑞 𝑥 /𝑝(𝑥)

Terminology
The variational free energy
𝐹 𝑞 =T

7
𝑞 𝒙 𝐸 𝒙 +T

7
𝑞 𝒙 ln 𝑞(𝒙)

= 𝑈 𝑞 − 𝐻(𝑞)
where 𝑈 𝑞 = ∑7 𝑞 𝒙 𝐸 𝒙
is the variational average energy
and 𝐻(𝑞)= -∑7 𝑞 𝒙 ln 𝑞(𝒙)
is the variational entropy.

𝐾𝐿(𝑞| 𝑝 ≥ 0 and is zero when
𝑞 = 𝑝.
From 𝐹0 = 𝐹 𝑞 − 𝐾𝐿(𝑞||𝑝),
𝐹 𝑞 is an upper bound for 𝐹0

• Minimizing 𝐹 𝑞 improves
approximation, exact when 𝑞 = 𝑝

Minimizing 𝐹 𝑞 intractable in
general

• One approximate method is to use
a tractable 𝑞

• Mean field uses a factorized
belief

𝑞9: 𝑥 =F
%;!

/

𝑞%(𝑥%)

Mean Field

Mean field often solved by coordinate descent
• Optimize one variable at a time, holding other variables

constant

𝑞[𝑥[= \
]5
6 exp −∑𝒙_5∏`a[

b 𝑞` 𝑥` 𝐸 𝒙

Coordinate descent converges to local optimum.
• Local optimum is fixed point of updates for all variables.
• Parallel updates can also be done but may not always converge

Derivation

Mean field as message passing
Recall 𝐸 𝒙 = −∑,9 ln𝜓, 𝒙,

𝑞# 𝑥# =
1
𝑍#$
exp 9

𝒙\'!
:
()#

*

𝑞(𝑥(9
+

,

ln𝜓+ 𝒙+

=
1
𝑍#$
exp 9

+∈*(#)

9
𝒙\'!

:
()#

*

𝑞(𝑥(ln𝜓+ 𝒙+ + 9
+∉*(#)

9
𝒙\'!

:
()#

*

𝑞(𝑥(ln𝜓+ 𝒙+

To compute 𝑞, 𝑥, , only need 𝜓# 𝒙# for neighbouring factors 𝑎 ∈ 𝑁 𝑗

Does not depend on 𝑥#, constant

Previously
𝑞* 𝑥* = !

81
2 exp −∑𝒙\51∏%<*

/ 𝑞% 𝑥% 𝐸 𝒙

As a message passing algorithm on a factor graph:
repeat 𝑇 iterations

for each variable 𝑗 compute (serially or in parallel)
𝑚78(𝑥8) = ∑𝒙!\:1∏;∈= 7 ,;?8

= 𝑞; 𝑥; ln 𝜓7 𝒙7 for 𝑎 ∈ 𝑁 𝑗 in parallel

𝑞8 𝑥8 = @
A1
2 exp ∑7∈= 8 𝑚78 𝑥8

𝑥!

𝑥"𝑥# 𝑥$

𝐴𝐵

𝐶

Loopy Belief Propagation and
Bethe Free Energy1

For a tree-structured factor graph, the variational
free energy

𝐹 𝑞 =)
-
𝑞 𝒙 𝐸 𝒙 +)

-
𝑞 𝒙 ln 𝑞(𝒙)

= −)
#.$

"

)
𝒙$
𝑞# 𝒙# ln𝜓# 𝒙#

+)
#.$

"

)
𝒙𝒂
𝑞# 𝒙𝒂 ln

𝑞#(𝒙#)
∏1∈&(#)𝑞1(𝑥1)

+)
1.$

&

)
-&
𝑞1 𝑥1 ln 𝑞1(𝑥1)

1 Yedidia, Jonathan S., William T. Freeman, and Yair Weiss. "Constructing free-energy approximations and
generalized belief propagation algorithms." IEEE Transactions on information theory 51.7 (2005): 2282-2312.

Derivation

Variational average energy

Variational entropy

For the Bethe approximation, the following Bethe free energy
𝐹?@AB@ 𝑞 = 𝑈?@AB@ 𝑞 − 𝐻?@AB@(𝑞) is used even though the graph may
not be a tree, where

𝑈?@AB@ 𝑞 = −4
#C,

)

4
D=
𝑞# 𝒙# ln 𝜓# 𝒙#

H?@AB@ = −4
#C,

)

4
𝒙𝒂
𝑞# 𝒙𝒂 ln

𝑞# 𝒙𝒂
∏!∈G # 𝑞! 𝑥!

−4
!C,

G

4
D'
𝑞! 𝑥! ln 𝑞!(𝑥!)

For a tree-structured factor graph, the variational free energy

𝐹 𝑞 =)
-
𝑞 𝒙 𝐸 𝒙 +)

-
𝑞 𝒙 ln 𝑞(𝒙)

= −)
#.$

"

)
𝒙$
𝑞# 𝒙# ln𝜓# 𝒙# +)

#.$

"

)
𝒙𝒂
𝑞# 𝒙𝒂 ln

𝑞#(𝒙#)
∏1∈&(#)𝑞1(𝑥1)

+)
1.$

&

)
-&
𝑞1 𝑥1 ln 𝑞1(𝑥1)

In addition, we impose the constraints
• ∑7_% 𝑞% 𝑥% = ∑𝒙𝒂 𝑞, 𝒙, = 1
• 𝑞% 𝑥% ≥ 0, 𝑞, 𝑥, ≥ 0
• ∑𝒙𝒂 \5" 𝑞, 𝒙, = 𝑞%(𝑥%)

What does loopy belief propagation optimize?
Loopy belief propagation equations give the stationary points of
the constrained Bethe free energy.

Derivation

We only specify the factor
marginals 𝑞# 𝒙# and the variable
marginals 𝑞!(𝑥!).
• There may be no distribution 𝑞

whose marginals agree with
𝑞# 𝒙#

• Often called pseudomarginals
instead of marginal

Furthermore, the Bethe entropy
𝐻?@AB@(𝑞) is an approximation of
the variational entropy when the
graph is not a tree

Figure from Wainwright and Jordan 2008.
The set of marginals from valid probability
distributions 𝑀(𝐺) is a strict subset of the
set of of pseudomarginals 𝐿(𝐺).

Variational Inference Methods

Mean field minimizes the variational free energy
𝐹 𝑞 = 𝑈 𝑞 − 𝐻(𝑞)

• Assumes fully factorized 𝑞 for tractability
• Can be extended to other tractable 𝑞: structured mean field
• Minimizes upper bound of Helmholtz free energy 𝐹0 = − ln𝑍
• Converges to local optimum if coordinate descent used, may

not converge for parallel update
• Update equations be computed as message passing on graph

Variational Inference Methods
Loopy belief propagation can be viewed as minimizing Bethe free
energy, 𝐹?@AB@ 𝑞 = 𝑈?@AB@ 𝑞 − 𝐻?@AB@(𝑞), an approximation of
variational free energy

• May not be an upper bound of 𝐹@
• Resulting 𝑞 may not be consistent with a probability distribution
• May not converge, but performance often good when converges
• Message passing on a graph, various methods to help convergence,

e.g. scheduling messages, damping, etc.
• Extension to generalized belief propagation for other region based free

energy, e.g. Kikuchi free energy
Other commonly found variational inference message passing
methods include expectation propagation, also max product
linear programming relaxations for finding MAP approximations.

Parameter Estimation
Learn parameterized compatibility functions or components of energy
function 𝐸 𝒙|𝜽 = −∑7B ln 𝜓7 𝒙7|𝜃
• Can do maximum likelihood estimation
• If some variables are not observed, can do the EM algorithm
• If inference intractable, variational approximation for estimating the

latent variables is one approach: variational EM
• With mean field approximation, maximize a lower bound of likelihood

function
• Can also treat parameters as latent variables: Variational Bayes
For this tutorial, focus on unrolling the message passing algorithm into
a deep neural network and doing end-to-end learning (later).

Outline

• Markov Decision Process

Markov Decision Process

Markov Decision Process (MDP) is
defined by 𝑆, 𝐴, 𝑇, 𝑅
State 𝑆 : Current description of the
world

• Markov: the past is irrelevant once
we know the state

• Navigation example: Position of the
robot

Robot navigation

MDP 𝑆, 𝐴, 𝑇, 𝑅
Actions 𝐴 : Set of available
actions

• Navigation example:
• Move North
• Move South
• Move East
• Move West

Robot navigation

MDP 𝑆, 𝐴, 𝑇, 𝑅
Transition function 𝑇 :

• 𝑇 𝑠, 𝑎, 𝑠A = 𝑃(𝑠A|𝑠, 𝑎)
• Navigation example:

• Darker shade, higher probability

Robot navigation

MDP 𝑆, 𝐴, 𝑇, 𝑅
Reward function 𝑅 : Reward
received when action 𝑎 in state 𝑠
results in transition to state 𝑠′

• 𝑅(𝑠, 𝑎, 𝑠5)
• Navigation example:

• 100 if 𝑠′ is Home
• -100 if 𝑠′ is in the danger zone
• -1 otherwise

• Can be a function of a subset of
𝑠, 𝑎, 𝑠5 as in navigation example

Robot navigation

Example of 3 state, two action
Markov Decision Process
𝑆, 𝐴, 𝑇, 𝑅

• Transition can be sparse as in
navigation example

[Fig by waldoalvarez CC BY-SA 4.0]

MDP 𝑆, 𝐴, 𝑇, 𝑅
Policy 𝜋: Function from state and
time step to action

• 𝑎 = 𝜋 (𝑠, 𝑡)
• Navigation example:

• Which direction to move at current
location at step 𝑡

Robot navigation

Robot navigation
MDP 𝑆, 𝐴, 𝑇, 𝑅
Value function 𝑉I: How good is a
policy 𝜋 when started from state 𝑠

• 𝑉B 𝑠C = ∑D;CEF!𝐸[𝑅(𝑠D , 𝜋 𝑠D , 𝑡 , 𝑠DG!)
• 𝑇 is the horizon
• When horizon is infinite, usually

use discounted reward
• 𝑉4 𝑠 = ∑5678 𝐸[𝛾5 𝑅(𝑠5 , 𝜋 𝑠5 , 𝑡 , 𝑠59:)
• 𝛾 ∈ (0,1) is discount factor

MDP 𝑆, 𝐴, 𝑇, 𝑅
Optimal policy 𝜋∗: policy that
maximizes

𝑉F 𝑠G =<
HIG

J#@
𝐸[𝑅(𝑠H, 𝜋 𝑠H, 𝑡 , 𝑠HK@)

• For infinite horizon, discounted
reward MDP, optimal policy 𝜋∗(𝑠) is
stationary (independent of 𝑡)

• Optimal value 𝑉 𝑠 = 𝑉F∗(𝑠): value
corresponding to optimal policy

Robot navigation

Value Iteration Algorithm

Dynamic programming algorithm for solving MDPs
Let 𝑉(𝑠, 𝑇) denote the optimal value at 𝑠 when horizon is 𝑇,
initialized with 𝑉 𝑠, 0 = 𝑣T .
Then

𝑉 𝑠, 𝑇 = max
#
𝐸[𝑅 𝑠, 𝑎, 𝑠U + 𝑉 𝑠U, 𝑇 − 1]

= max
#
4

TU
𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠U + 𝑉 𝑠U, 𝑇 − 1)

As message passing on a graph
• Node at each state 𝑠, initialized to 𝑉 𝑠, 0 = 𝑣L
• Utilize |𝐴| ‘heads’, one for each action 𝑎
• repeat 𝑇 iterations

for each action 𝑎 of each state 𝑠 (in parallel)
Collect 𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠M + 𝑉 𝑠M) from all 𝑠′ to 𝑎 at 𝑠

if 𝑝 𝑠′|𝑎, 𝑠 non-zero
Sum all messages

for each node 𝑠 (in parallel)
Collect message from its corresponding actions 𝑎
Take the maximum of the messages

[Fig by waldoalvarez CC BY-SA 4.0]

𝑉(𝑠, 𝑇) = max
,
T

HA
𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠A + 𝑉 𝑠A, 𝑇 − 1)

Robot navigationShortest path example
• Deterministic transition (only one

next state with prob 1 from each
action)

• Initialize 𝑉 𝑠, 0 = 0 for goal state,
init to −∞ for other states

• Self loop with 0 reward at goal state
for all actions

• Reward −𝑤%* for moving from 𝑖 to 𝑗,
−∞ if no edge between the two
nodes

• Value iteration is Bellman-Ford
shortest path algorithm

After 𝑘 iterations, values at each
node is the value of the (-ve)
shortest path from the node to the
goal, reachable within 𝑘 steps.

Robot navigation

At initialization

−∞ −∞

−∞ −∞ −∞

−∞ −∞

After 𝑘 iterations, values at each
node is the value of the (-ve)
shortest path from the node to the
goal, reachable within 𝑘 steps.

−∞ −𝟏

−∞ −∞ −𝟏

−∞ −∞

Robot navigation

After 1 iteration

After 𝑘 iterations, values at each
node is the value of the (-ve)
shortest path from the node to the
goal, reachable within 𝑘 steps.

−𝟐 −𝟏

−∞ −𝟐 −𝟏

−∞ −𝟐

Robot navigation

After 2 iterations

For the infinite horizon discounted case, the dynamic
programming equation (Bellman equation) is

𝑉 𝑠 = max
#
𝐸[𝑅 𝑠, 𝑎, 𝑠U + 𝛾𝑉 𝑠U]

= max
#
4

TU
𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠U + 𝛾𝑉 𝑠U)

Same value iteration algorithm with message changed to
𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠U + 𝛾𝑉 𝑠U)

Converges to the optimal value function

Convergence of Value Iteration

Derivation

The optimal value function 𝑉(𝑠) satisfies Bellman’s principle of optimality
𝑉 𝑠 = max

,
T

HA
𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠A + 𝛾𝑉 𝑠A)

The Bellman update 𝐵 in value iteration transforms 𝑉D to 𝑉DG! as follows
𝑉DG! 𝑠 = max

,
T

HA
𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠A + 𝛾𝑉D 𝑠A)

We denote this as 𝑉DG! = 𝐵𝑉D.
The optimal value function is a fixed point of this operator 𝑉 = 𝐵𝑉.
The Bellman update is a contraction (for the max norm), i.e.

𝐵𝑉! − 𝐵𝑉# ≤ 𝛾 𝑉! − 𝑉#

From Bellman’s equation, we have 𝑉 = 𝐵𝑉 for the optimal value
function 𝑉.
Applying 𝑉A = 𝐵𝑉A$, repeatedly and using contraction property
𝐵𝑉, − 𝐵𝑉V ≤ 𝛾 𝑉, − 𝑉V we have

𝑉A − 𝑉 = 𝐵𝑉A$, − 𝐵𝑉 ≤ 𝛾 𝑉A$, − 𝑉 ≤ 𝛾A 𝑉W − 𝑉
Distance converges exponentially to 0 for any initial value 𝑉W

Outline

• Graph Neural Networks and Attention Networks

Graph Neural Networks
• Many effective graph neural networks (GNN):

GCN, GIN, …
• Message passing neural networks

(MPNN)1: general formulation for GNNs as
message passing algorithms.

• Input: 𝐺 = (𝑉, 𝐸), node attributes vectors 𝑥% , 𝑖 ∈ 𝑉,
edge attribute vectors 𝑥%* , 𝑖, 𝑗 ∈ 𝐸

• Output: Label or value for graph classification or
regression, or a label/value for each node in
structured prediction

1 Gilmer, Justin, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. "Neural message
passing for quantum chemistry." In International conference on machine learning, pp. 1263-1272. PMLR, 2017

v1

v2

v3

𝑥!

𝑥"

𝑥#
𝑥!#

𝑥#!

𝑥"#

𝑥!"

MPNN pseudocode
Initialization: ℎ!W = 𝑥! for each 𝑣! ∈ 𝑉
for layers ℓ = 1,… , 𝑑

for every edge 𝑖, 𝑗 ∈ 𝐸 (in parallel)
𝑚!"
X = 𝑀𝑆𝐺ℓ(ℎ!ℓ$,, ℎ"ℓ$,, 𝑣! , 𝑣" , 𝑥!")

for every node 𝑣! ∈ 𝑉 (in parallel)
ℎ!ℓ = 𝑈𝑃ℓ {𝑚!"

X : 𝑗 ∈ 𝑁(𝑖) , ℎ!ℓ$,)
return ℎ!Z for every 𝑣! ∈ 𝑉 or 𝑦 = 𝑅𝐸𝐴𝐷(ℎ!Z: 𝑣! ∈ 𝑉)

• 𝑀𝑆𝐺ℓ is arbitrary function, usually a neural net
• 𝑈𝑃ℓ aggregrates the messages from neighbours (usually with a set

function) and combine with node embedding
• 𝑅𝐸𝐴𝐷 is a set function for graph classification or regression tasks

𝑥"

v1

v2

v3

𝑥!

𝑥#
𝑥!#

𝑥#!

𝑥"#

𝑥!"

GNN properties
If depth and width are large enough, message
functions 𝑀𝑆𝐺ℓ and update functions 𝑈𝑃ℓ are
sufficiently powerful, and nodes can uniquely
distinguish each other, then the MPNN is
computationally universal1

• Equivalent to LOCAL model in distributed algorithms
• Can compute any function computable with respect to

the graph and attributes (just send all information,
including graph structure, to a single node, then
compute there).

1 Loukas, Andreas. "What graph neural networks cannot learn: depth vs width.” ICLR 2020

Notation
Depth:
number of
layers

Width: largest
embedding
dimension

Example:

𝑷 =
0 0 1
1
0

0
1

0
0
, 𝑨 =

1 2 3
4
7

5
8

6
9

𝑷 permutes vertices 1,2,3 → (3,1,2)

𝑷𝑨 swap the rows
0 0 1
1
0

0
1

0
0

1 2 3
4
7

5
8

6
9

=
7 8 9
1
4

2
5

3
6

𝑷𝑨 𝑷J swap the columns after that
7 8 9
1
4

2
5

3
6

0 1 0
0
1

0
0

1
0

=
9 7 8
3
6

1
4

2
5

When using graph neural
networks, we are often interested
in permutation invariance and
equivariance
Given an adjacency matrix 𝑨, a
permutation matrix 𝑷, and
attribute matrix 𝑿 containing the
attributes 𝑥; on the 𝑖-th row

• Permutation invariance:
𝑓 𝑷𝑨𝑷𝑻, 𝑷𝑿 = 𝑓(𝑨, 𝑿)

• Permutation equivariance:
𝑓 𝑷𝑨𝑷𝑻, 𝑷𝑿 = 𝑷𝑓(𝑨, 𝑿)

If 𝑀𝑆𝐺ℓ does not depend on node
ids 𝑣; , 𝑣8, MPNN is permutation
invariant and equivariant for any
permutation matrix 𝑷,
𝑀𝑃𝑁𝑁 𝑷𝑨𝑷𝑻, 𝑷𝑿 = 𝑷𝑀𝑃𝑁𝑁(𝑨, 𝑿)

• However, lose approximation
power if messages do not depend
on node ids – cannot distinguish
some graph structures

• Discrimination power at most as
powerful as the 1-dimensional
Weisfeiler-Lehman (WL) graph
isomorphism test, which cannot
distinguish certain graphs

• Graph isomorphism network (GIN)1
as powerful as 1-WL

MPNN pseudocode
Initialization: ℎ(7 = 𝑥(for each 𝑣(∈ 𝑉
for layers ℓ = 1,… , 𝑑

for every edge 𝑖, 𝑗 ∈ 𝐸 (in parallel)
𝑚(#
< = 𝑀𝑆𝐺ℓ(ℎ(ℓ>:, ℎ#ℓ>:, 𝑣(, 𝑣# , 𝑥(#)

for every node 𝑣(∈ 𝑉 (in parallel)
ℎℓ
ℓ = 𝑈𝑃({𝑚(#

< : 𝑗 ∈ 𝑁(𝑖) , ℎ(ℓ>:)
return ℎ(? for every 𝑣(∈ 𝑉 or 𝑦 = 𝑅𝐸𝐴𝐷(m
n

ℎ(?: 𝑣(∈
𝑉)

1 Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. "How powerful are graph neural networks?" ICLR 2019

Drug Discovery

Molecules naturally represented as
graphs
GNNs commonly used for
predicting properties of molecules,
e.g. whether it inhibits certain
bacteria, etc.

[Figs on paracetamol by Benjah-bmm27 and Ben
Mills are in the public domain]

Bellman Ford Shortest Path

for ℓ = 1,… , 𝑑
for 𝑣 ∈ 𝑉 (in parallel)

d ℓ 𝑣 = min
"
𝑑 ℓ − 1 𝑢 + 𝑤(𝑢, 𝑣)

Algorithmic Alignment

Graph Neural Network

for layers ℓ = 1,… , 𝑑
for 𝑣 ∈ 𝑉 (in parallel)

ℎ#ℓ = 𝑈𝑃({𝑀𝐿𝑃 ℎ"ℓ%& , ℎ#ℓ%& , 𝑤(𝑢, 𝑣) }, ℎ#ℓ%&)

1 Xu, Keyulu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka. "What can
neural networks reason about?.” ICLR 2020

Sample complexity for learning a GNN is smaller for tasks that
the GNN is algorithmically aligned with1.

d ℓ 𝑣 easy function to
approximate by 𝑀𝐿𝑃 as

function of 𝑑 ℓ − 1 𝑢 ,𝑤 .
Same 𝑀𝐿𝑃 shared by all nodes,

good inductive bias, so low
sample complexity

In contrast, learning entire for loop
with a single function requires

higher sample complexity

Alignment of GNN and VI

1 Tamar, Aviv, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. "Value iteration networks.” NeurIPS 2016

Value iteration algorithm for MDPs can be represented in a network
form – value iteration network (VIN)1.
• GNN well aligned with value iteration

Value Iteration
for ℓ = 1,… , 𝑑

for 𝑣 ∈ 𝑉 (in parallel)
𝒱(𝑣, ℓ) = max

+
∑@ 𝑝 𝑢|𝑎, 𝑣 (𝑅 𝑣, 𝑎, 𝑢 + 𝒱 𝑢, ℓ − 1)

Graph Neural Network
for layers ℓ = 1,… , 𝑑

for 𝑣 ∈ 𝑉 (in parallel)
ℎAℓ = 𝑈𝑃({𝑀𝐿𝑃 ℎ@ℓ>:, ℎAℓ>:, {𝑝 𝑢|𝑎, 𝑣 , 𝑅 𝑣, 𝑎, 𝑢 } }, ℎAℓ>:)

1 Karkus, Peter, David Hsu, and Wee Sun Lee. "QMDP-net: Deep learning for planning under partial observability."
NeurIPS 2017

Value Iteration
for ℓ = 1,… , 𝑑

for 𝑣 ∈ 𝑉 (in parallel)
𝒱(𝑣, ℓ) = max

'
∑" 𝑝 𝑢|𝑎, 𝑣 (𝑅 𝑣, 𝑎, 𝑢 + 𝒱 𝑢, ℓ − 1)

Example: robot navigation
using a map, using VIN1

• The transition 𝑝 𝑢|𝑎, 𝑣 and
reward 𝑅 𝑣, 𝑎, 𝑢 function
may also need to be learned,
instead of being provided.

• Message passing structure
suggests

• represent transition and
reward separately, learned as
function of image

• use as input to same function
at all states

1 Lee, Lisa, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing, and Ruslan Salakhutdinov. "Gated path
planning networks.” ICML 2018.

GNN well aligned with value iteration:
may work well here
VIN has stronger inductive bias: encode
value iteration equations directly

• Action heads: for each action, take
weighted sum from neighbours

• Then max over actions
GNN potentially more flexible: also
aligned other similar algorithms,
particularly dynamic programming
algorithms

• May work better if MDP assumption is not
accurate

• Optimization may be easier for some
types of architectures1

Alignment of GNN and Graphical Model
Algorithms Mean field

repeat 𝑇 iterations
for each variable 𝑗 compute (serially or in parallel)

𝑚'((𝑥() = ∑𝒙!\+"∏,∈. ' ,,0(
. 𝑞, 𝑥, ln 𝜓' 𝒙' for 𝑎 ∈ 𝑁 𝑗 in parallel

𝑞(𝑥(= &
1"
exp ∑'∈. (𝑚'(𝑥(

1 Dai, Hanjun, Bo Dai, and Le Song. "Discriminative embeddings of latent variable models for structured data." ICML 2016.

When all potential functions are pairwise 𝜓# 𝒙# = 𝜓!,"(𝑥! , 𝑥"), then
𝑚#"(𝑥") is a function of only 𝑞! 𝑥! .

• Can send message directly from variable to variable without combining
the messages at factor nodes

• Can interpret node embedding as feature representation of belief and
learn a mapping from one belief to another as a message function1

• GNN algorithmically well aligned with mean field for pairwise potential functions
• Similarly well aligned with loopy belief propagation for pairwise potential

What about with higher order potentials
𝜓# 𝒙# where 𝒙# consists of 𝑛# variables?

• In tabular representation, size of 𝜓, 𝒙,
grows exponentially with 𝑛,, so even loopy
belief propagation is not efficient

• But if 𝜓, 𝒙, is low-ranked tensor, then loopy
belief propagation can be efficiently
implemented1,2

• Represent 𝜓+ 𝒙+ as a tensor decomposition (CP
decomposition), where 𝑘+ is the rank
𝜓+ 𝒙+ = ∑(6:

B2 𝑤+,:((𝑥+,:)𝑤+,D((𝑥+,D)…𝑤+,E2
(𝑥+,E2

• Factor graph neural network (FGNN), which
passes messages on a factor graph is well
aligned with this

1 Dupty, Mohammed Haroon, and Wee Sun Lee. "Neuralizing Efficient Higher-order Belief Propagation." arXiv
preprint arXiv:2010.09283 (2020)
2 Zhang, Zhen, Fan Wu, and Wee Sun Lee. "Factor graph neural network." NeurIPS 2020.

𝑥!

𝑥"𝑥# 𝑥$

𝐴𝐵

𝐶

Implement message functions
𝑛1# 𝑥1 = 2

Z∈&(1)\\

𝑚Z1(𝑥1)

𝑚#1 𝑥1 = ∑
𝒙$\]&

𝜓# 𝒙# 2
,∈&(#)\^

𝑛1,(𝑥,)

using	

𝜓# 𝒙# =)
ℓ.$

_$
2
,∈&(#)

𝑤#,,ℓ (𝑥,)

𝑚#! 𝑥! = ∑
𝒙`\+a

𝜓# 𝒙# '
"∈G(#)\z

𝑛!"(𝑥")

=+
𝒙`\+a

+
ℓC,

{`
'
"∈G(#)

𝑤#,"ℓ (𝑥") '
"∈G(#)\z

𝑛!"(𝑥")

=+
ℓC,

{`
𝑤#,!ℓ (𝑥!) +

𝒙`\+_!

'
"∈G(#)\z

𝑤#,"ℓ (𝑥")𝑛!"(𝑥")

=+
ℓC,

{`
𝑤#,!ℓ (𝑥!) '

"∈G(#)\z

+
+b

𝑤#,"ℓ (𝑥")𝑛!"(𝑥")

Matrix notation
• 𝑚#1 vector of length 𝑛1
• 𝑛1# vector of length 𝑛1
• 𝑤#,1ℓ vector of length 𝑛1
• 𝑾#1 matrix of 𝑘#rows where each

row is (𝑤#,1ℓ)c
• ⊙ element-wise multiplication

𝑛%, 𝑥% = ∏-∈/(%)\3𝑚-%(𝑥%)

𝑚,% 𝑥% =T
ℓ;!

`!
𝑤,,%ℓ (𝑥%) F

*∈/(,)\6

T
51

𝑤,,*ℓ (𝑥*)𝑛%*(𝑥*)

In matrix notation
𝑚7; = 𝑾7;

J ⊙8∈=(7)\Z𝑾78𝑛87
𝑛;7 =⊙[∈=(;)\\ 𝑚[;

To make factor and variable
messages symmetric

𝑚7;
M =⊙8∈=(7)\Z𝑾78𝑛87

𝑛;7 =⊙[∈=(;)\\𝑾[;
J𝑚[;

M

Matrix vector multiplication
followed by product aggregation.

Factor graph provides an easy way to
specify dependencies, even higher
order ones.
Loopy belief propagation can be
approximated with the following
message passing equations

𝑚#! =⊙"∈G(#)\z𝑾#"𝑛"#
𝑛!# =⊙}∈G(!)\~𝑾}!

� 𝑚}!

Optimizes Bethe free energy if it
converges.

• Uses low rank approximation
for potential functions.

• Increasing number of rows
of 𝑾,% increases rank
of tensor decomposition
approximation.

Neuralizing Loopy Belief Propagation
Alignment shows that a neural network with small number of
parameters can approximate an algorithm, smaller sample
complexity in learning: analysis.
Can also use the ideas in design.
Neuralizing the algorithm

• Start with the network representing the algorithm to capture the inductive
bias.

• Modify the algorithm, e.g. add computational elements to enhance
approximation capability, while mostly maintaining the structure to keep
the inductive bias.

• Start with an algorithm in network form, e.g.
𝑚,% =⊙*∈/(,)\6𝑾,*𝑛*,
𝑛%, =⊙-∈/(%)\3𝑾-%

E𝑚-%

• Add network elements to potentially make the network
more powerful – enlarge the class of algorithms that can be
learned, e.g.

𝑚,% = 𝑀𝐿𝑃(⊙*∈/(,)\6𝑾,*𝑛*,)
𝑛%, = 𝑀𝐿𝑃(⊙-∈/(%)\3𝑾-%

E𝑚-%)
• It is usually simpler to keep messages only on nodes

instead of on edges, simplify while keeping message
passing structure. Can also change aggregrator, e.g. to
sum, max, etc. Works well in practice

𝑚, = 𝑀𝐿𝑃(𝐴𝐺𝐺*∈/(,)𝑾,*𝑛*)
𝑛% = 𝑀𝐿𝑃(𝐴𝐺𝐺-∈/(%)𝑾-%

E𝑚-)

𝑥!

𝑥"

𝑥#

𝑥$

𝐴

𝐵

𝐶

Message passing neural net on
factor graph

Attention Network

Distributed Representation of Graphs and
Matrices
A graph can be represented using an adjacency matrix
A matrix 𝐴, in turn can be factorized 𝐴 = 𝑈𝑉E

In factorized form, 𝑢%E𝑣* = 𝐴%*
• Entry 𝑖, 𝑗 of matrix 𝐴 is the inner product of row 𝑖 of matrix 𝑈 with row 𝑗 of matrix 𝑉
• Node 𝑖 of graph has an embeddings 𝑢(, 𝑣(such that the value of edge (𝑖. 𝑗) can be

computed as 𝑢(F𝑣#
• Distributed representation of graph – information distributed to the nodes

𝐴 = 𝑈𝑉E 𝐴%* = 𝑢%E𝑣* =T
`

𝑢%`𝑣*`

𝑎!! 𝑎!# 𝑎!"
𝑎#! 𝑎## 𝑎#"
𝑎"! 𝑎"# 𝑎""

=
𝑢!! 𝑢!#
𝑢#! 𝑢##
𝑢"! 𝑢"#

𝑣!! 𝑣#! 𝑣"!
𝑣!# 𝑣## 𝑣"#

With distributed
representation, using a
subset of embeddings 𝑢% , 𝑣%
gives representation of
subgraph!

Attention Network
Using matrix factorization, we can show
that the transformer-type attention
network is well aligned with value iteration
for MDP
In the attention network, we have a set of
nodes, each of which has an embedding
as input, and the same operations
(implemented with a network) are applied
at each node in a layer.

Multi-Head
Attention

Add

Feedforward

Add

Multi-head attention
Let embedding at node 𝑖 be 𝑥`

• Each node has 𝐾 attention heads
• Each attention head has weight

matrices: query weights 𝑾a used to
compute query 𝑞% = 𝑾a𝑥%, key
weights 𝑾b used to compute key
𝑘% = 𝑾b𝑥% and value weights 𝑾c
used to compute 𝑣% = 𝑾c𝑥%.

• Compute 𝑎%* = 𝑞%E𝑘* with all other
nodes 𝑗. Compute probability vector
𝑝%* for all 𝑗 using the softmax function
𝑝%* = 𝑒,"1/∑ℓ 𝑒,"ℓ. The output of the
head is a weighted average of all the
values ∑* 𝑝%*𝑣*.

𝑥'

𝑞' = 𝑾(𝑥'𝑣' = 𝑾)𝑥'𝑘' = 𝑾*𝑥'𝑘#

𝑎'# = 𝑞'+𝑘#

Softmax

… .

Weighted Average

𝑥#

Concatenate Across K Heads

Projection

Output of Multi-Head Attention

Output of multi-head attention
• Concatenate outputs of 𝐾 attention heads
• Project back to vector of the same length
• Passed to a feedforward network through a

residual operation (added to 𝑥%)

𝑥'

𝑞' = 𝑾(𝑥'𝑣' = 𝑾)𝑥'𝑘' = 𝑾*𝑥'𝑘#

𝑎'# = 𝑞'+𝑘#

Softmax

… .

Weighted Average

𝑥#

Concatenate Across K Heads

Projection

Output of Multi-Head Attention

Multi-Head
Attention

Add

Feedforward

Add

Alignment of Attention Network
with Value Iteration

Constructing input 𝑥%
• Use matrix factorization to get a

distributed representation of the
log of each transition matrix
𝐿, = 𝑈,𝑉,E for each action 𝑎 where
𝐿,[𝑠, 𝑠A] = log 𝑃(𝑠A|𝑠, 𝑎).

• Construct input for node 𝑖, 𝑥%, by
stacking up 𝐾 + 1 copies of initial
value 𝑣% followed by embeddings of
transition matrices

𝑅b%
⋮
𝑅!%
𝑣b%
𝑢b%
⋮
𝑣!%
𝑢!%
𝑣%
⋮
𝑣%

𝐾 + 1 copies of
initial value 𝑣%

Embeddings of
transition matrices
for each action
for state 𝑖

Reward for each
action for state 𝑖

Constructing input 𝑥%
• Compute expected reward
𝑅,H = 𝐸[𝑅 𝑠, 𝑎, 𝑠A] for each action of
the 𝐾 actions.

• Place expected reward 𝑅,% for each
action 𝑎 into a single vector input and
concatenate to the earlier input
vector.

𝑅b%
⋮
𝑅!%
𝑣b%
𝑢b%
⋮
𝑣!%
𝑢!%
𝑣%
⋮
𝑣%

𝐾 + 1 copies of
initial value 𝑣%

Embeddings of
transition matrices
for each action
for state 𝑖

Reward for each
action for state 𝑖

Need to extract out 𝑢7; , 𝑣78 to compute
𝑝 𝑗 𝑎, 𝑖 = exp(𝑢7;J 𝑣78)

• Setting 𝑊d = [0, 𝐼e , 0] where 𝐼_ is a 𝑘 by 𝑘
identity matrix at the appropriate columns will
extract 𝑢#1 = 𝑊d𝑥1 as query.

• Similarly can construct 𝑊e to extract 𝑣#, as
key, allowing softmax of inner product 𝑢#1c 𝑣#, to
correctly compute transition probabilities.

• Set 𝑊f to extract out the value component
from 𝑥1

With this construction, output of head 𝑎 is
𝑜7 = ∑8 𝑝 𝑗 𝑎, 𝑖 𝑣8

At each layer of value iteration:
for each action 𝑎 of each state 𝑠 (in parallel)

Collect 𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠3 + 𝑉 𝑠3) from all 𝑠′ to 𝑎 at 𝑠 if 𝑝 𝑠′|𝑎, 𝑠 non-zero
Sum all messages

for each node 𝑠 (in parallel)
Collect message from its corresponding actions 𝑎
Take the maximum of the messages

0
⋮
0

…
⋱
…

0
⋮
0
𝐼`
0
⋮
0

…
⋱
…

0
⋮
0

𝑅b%
⋮
𝑅!%
𝑣b%
𝑢b%
⋮
𝑣!%
𝑢!%
𝑣%
⋮
𝑣%

= 𝑢,%

Output of head 𝑎 is

𝑜#! =4
"

𝑝 𝑗 𝑎, 𝑖 𝑣"

Concatenate as 𝑜,! …𝑜�! � and
add to first 𝐾 components of 𝑥! to
form input to feedforward
network,

At each layer of value iteration:
for each action 𝑎 of each state 𝑠 (in parallel)

Collect 𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠3 + 𝑉 𝑠3) from all 𝑠′ to 𝑎 at 𝑠 if 𝑝 𝑠′|𝑎, 𝑠 non-zero
Sum all messages

for each node 𝑠 (in parallel)
Collect message from its corresponding actions 𝑎
Take the maximum of the messages

Multi-Head
Attention

Add

Feedforward

Add
𝑅b%
⋮
𝑅!%
𝑣b%
𝑢b%
⋮
𝑣!%
𝑢!%
𝑣%

𝑣% + 𝑜b%
⋮

𝑣% + 𝑜!%

Feedforward network:
• Subtract 𝑣_𝑖 from 𝑣% + 𝑜,% to get 𝑜,%
• Compute 𝑣%A = max

,
{𝑅,%+𝑜,%}

• Construct output so that adding back
the input of the feedforward network
gets 𝑣%Ain the first 𝐾 + 1 positions and
the original MDP parameters in the
remaining positions:
output the value 𝑣%A − (𝑣% + 𝑜,%) as
first 𝐾 elements and 𝑣%A − 𝑣% as the
𝐾 + 1st element,

At each layer of value iteration:
for each action 𝑎 of each state 𝑠 (in parallel)

Collect 𝑝 𝑠′|𝑎, 𝑠 (𝑅 𝑠, 𝑎, 𝑠3 + 𝑉 𝑠3) from all 𝑠′ to 𝑎 at 𝑠 if 𝑝 𝑠′|𝑎, 𝑠 non-zero
Sum all messages

for each node 𝑠 (in parallel)
Collect message from its corresponding actions 𝑎
Take the maximum of the messages

Multi-Head
Attention

Add

Feedforward

Add
𝑅b%
⋮
𝑅!%
𝑣b%
𝑢b%
⋮
𝑣!%
𝑢!%
𝑣%

𝑣% + 𝑜b%
⋮

𝑣% + 𝑜!%

Learning

All methods discussed are message passing methods on a graph
• Messages are constructed using operations such as addition,

multiplication, max, exponentiation, etc.
• Can be represented using network of computational elements
• Usually same network at each graph node

Each iteration of message passing forms a layer
Putting together layers form a deep network

• Different layers can have different parameters, additional flexibility
With appropriate loss functions, can learn using gradient descent if all
network elements are differentiable: backpropagation

Backpropagation and Recurrent
Backpropagation

If different layers all have the same parameters, we have a recurrent
neural network.
For some recurrent networks, the inputs the same at each iteration and
we are aiming for solution at convergence

• Loopy belief propagation
• Value iteration for discounted MDP
• Some graph neural networks1
• Some tranformer architectures2

Recurrent backpropagation and other optimization methods based on
implicit functions can be used3

• Constant memory usage

1 Scarselli, Franco, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. "The graph
neural network model." IEEE Transactions on Neural Networks, 2008.
2 Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun. "Deep equilibrium models." NeurIPS 2019
3 Zico Kolter, David Duvenaud, and Matt Johnson, “Deep Implicit Layers - Neural ODEs, Deep Equilibirum Models,
and Beyond.” NeurIPS 2020 Tutorial http://implicit-layers-tutorial.org/

http://implicit-layers-tutorial.org/

Summary

Message Passing in Machine Learning
We viewed some “classic” message passing algorithms in machine learning
through variational principles

• Loopy belief propagation
• Mean field
• Value iteration

What optimization problems are they solving?

We relate graph neural networks and attention networks to the “classic”
message passing algorithms

• Algorithmic alignment (analysis): Can they simulate those algorithms using a small
network?

• Neuralizing algorithms (design): Can we enhance those algorithms into more
powerful neural versions

References1
• David Mackay’s Error Correcting Code demo

http://www.inference.org.uk/mackay/codes/gifs/
• Zheng, Shuai, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav

Vineet, Zhizhong Su, Dalong Du, Chang Huang, and Philip HS Torr.
"Conditional random fields as recurrent neural networks." In Proceedings
of the IEEE international conference on computer vision, pp. 1529-1537.
2015.

• Yedidia, Jonathan S., William T. Freeman, and Yair Weiss. "Constructing
free-energy approximations and generalized belief propagation
algorithms." IEEE Transactions on information theory 51.7 (2005): 2282-
2312.

• Wainwright, Martin J., and Michael Irwin Jordan. Graphical models,
exponential families, and variational inference. Now Publishers Inc, 2008.

1 This list contains only references referred to within the slides and not the many other works related to the
material in the tutorial.

http://www.inference.org.uk/mackay/codes/gifs/

• Markov Decision Process (figure) by waldoalvarez - Own work, CC
BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=59364518

• Gilmer, Justin, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals,
and George E. Dahl. "Neural message passing for quantum
chemistry." In International conference on machine learning, pp. 1263-
1272. PMLR, 2017.

• Loukas, Andreas. "What graph neural networks cannot learn: depth vs
width.” ICLR 2020

• Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. "How
powerful are graph neural networks?" ICLR 2019

https://commons.wikimedia.org/w/index.php?curid=59364518

• Xu, Keyulu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. "What can neural networks reason
about?.” ICLR 2020

• Skeletal formula of paracetamol by Benjah-bmm27 is in the public domain,
https://en.wikipedia.org/wiki/Paracetamol#/media/File:Paracetamol-
skeletal.svg

• Ball and stick model of paracetamol by Ben Mills is in the public domain,
https://en.wikipedia.org/wiki/Paracetamol#/media/File:Paracetamol-from-
xtal-3D-balls.png

• Tamar, Aviv, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel.
"Value iteration networks.” NeurIPS 2016.

• Lee, Lisa, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing, and
Ruslan Salakhutdinov. "Gated path planning networks.” ICML 2018.

https://commons.wikimedia.org/wiki/User:Benjah-bmm27
https://en.wikipedia.org/wiki/Paracetamol
https://en.wikipedia.org/wiki/Paracetamol

• Karkus, Peter, David Hsu, and Wee Sun Lee. "QMDP-net: Deep
learning for planning under partial observability." NeurIPS 2017.

• Dai, Hanjun, Bo Dai, and Le Song. "Discriminative embeddings of
latent variable models for structured data." ICML 2016.

• Dupty, Mohammed Haroon, and Wee Sun Lee. "Neuralizing Efficient
Higher-order Belief Propagation." arXiv preprint
arXiv:2010.09283 (2020).

• Zhang, Zhen, Fan Wu, and Wee Sun Lee. "Factor graph neural
network." NeurIPS 2020.

• Scarselli, Franco, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. "The graph neural
network model." IEEE Transactions on Neural Networks 20, no.
1 (2008): 61-80.

• Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun. "Deep
equilibrium models." NeurIPS 2019.

• Zico Kolter, David Duvenaud, and Matt Johnson, “Deep Implicit
Layers - Neural ODEs, Deep Equilibirum Models, and Beyond.”
NeurIPS 2020 Tutorial http://implicit-layers-tutorial.org/

http://implicit-layers-tutorial.org/

Appendix

Correctness of Belief Propagation
on Trees

𝑚,% 𝑥%

𝑻𝒊

𝑏 𝑐

𝑥e

𝑥%

𝑥* 𝑥`

𝑎

𝑚

𝑛%, 𝑥% = F
-∈/(%)\3

𝑚-%(𝑥%)

𝑚,% 𝑥% = ∑
𝒙!\5"

𝜓, 𝒙, F
*∈/(,)\6

𝑛*%(𝑥*)

𝑏% 7" ∝ F
,∈/(%)

𝑚,%(𝑥%)

Assume 𝑇% is the subtree along edge
𝑎, 𝑖 , rooted at 𝑥% and message 𝑚,% 𝑥% is sent

from 𝑎 to 𝑖.
After 𝒌 iterations of message passing, the
message correctly marginalizes away other
variables in the subtree
𝑚,% 𝑥% = ∑7A∈E"\5"∏,∈E"𝜓,(𝒙,

A)
where 𝑘 is the height of the subtree.

Assume marginalization correctly
done for subtrees of height < 𝑘
• Push summation inside product,

can group at subtrees depth 2
below 𝑎 because of tree structure

• By inductive hypothesis,
marginalization correct at depth 2
below

So after 𝑘 iterations of message passing,
marginalization at height 𝑘 correct

Correctness
Init all messages to all-one vectors.
Then:

𝑥%

𝑥* 𝑥`

𝑎

𝑚

𝑚,' 𝑥' =1
"!

1
""

1
"#

1
"...

𝜓, 𝑥' , 𝑥# , 𝑥. 𝜓/ … …

𝑏 𝑐

𝑥e

𝑥%

𝑥* 𝑥`

𝑎

𝑚

𝑚,' 𝑥' =1
"!

1
""

𝜓, 𝑥' , 𝑥# , 𝑥. 1
"#

1
"...

𝜓/ … …1
"…

𝜓1 … …

𝑏 𝑐

𝑥e

Compute
at 𝑚/# 𝑥#
instead

Mean Field Update Derivation
In mean field
approximation, we find
𝑞 that minimizes the
variational free energy

𝐹 𝑞 = ∑' 𝑞 𝒙 𝐸 𝒙 +
∑' 𝑞 𝒙 ln 𝑞(𝒙)

when 𝑞 is restricted to a
factored form

𝑞Bc 𝑥 = ∏;I@
= 𝑞;(𝑥;).

Consider the dependence on a single variable 𝑞,(𝑥,) with all other
variables fixed

𝐹 𝑞 ='
𝒙
(
1.$

&

𝑞1(𝑥1) 𝐸 𝒙 +'
𝒙
(
1.$

&

𝑞1(𝑥1) ln(
1.$

&

𝑞1(𝑥1)

='
-2
𝑞,(𝑥,)'

𝒙\]2
(
1i,

&

𝑞1(𝑥1) 𝐸 𝒙 +'
-2
𝑞, 𝑥, ln 𝑞,(𝑥,) + 𝑐𝑜𝑛𝑠𝑡

='
-2
𝑞, 𝑥, ln

1
𝑝,5 𝑥,

+ 𝑐𝑜𝑛𝑠𝑡 +'
-2
𝑞, 𝑥, ln 𝑞,(𝑥,) + 𝑐𝑜𝑛𝑠𝑡

where 𝑝,5 𝑥, =
1
𝑍,′
exp −'

𝒙\]2
(
1i,

&

𝑞1 𝑥1 𝐸 𝒙

= 𝐾𝐿(𝑞,||𝑝,5) + 𝑐𝑜𝑛𝑠𝑡

which is minimized at 𝑞, 𝑥, = 𝑝,5 𝑥, .

Variational Free Energy for Trees

As 𝑞G 𝑥G also appears on the numerator, we
can write the distribution as

∏+ 𝑞+(𝒙+)
∏(𝑞(𝑥(?>:

Multiplying the numerator and denominator by
∏(𝑞((𝑥() and observing that
∏#∏1∈&(#) 𝑞1(𝑥1) = ∏(𝑞(𝑥(? gives the
required expression

𝑥!

𝑥"𝑥# 𝑥$

𝐴𝐵

𝐶

We can write a tree distribution as
∏+ 𝑞+ 𝒙+ ∏(𝑞((𝑥()
∏+∏1∈&(#) 𝑞1(𝑥1)

To see this, we can write a tree distribution as

𝑞G 𝑥G :
+

𝑞+(𝒙𝒂|𝑝𝑎 𝒙+)

where 𝑥Gis the root, and 𝑝𝑎 𝒙+ is the parent
variable for factor 𝑎 in the tree
We write

𝑞+ 𝒙𝒂 𝑝𝑎 𝒙+ =
𝑞+(𝒙+)
𝑞H+(𝒙𝒂)

Each variable appears as a parent 𝑑 − 1 times,
where 𝑑 is the degree of the variable node,
except the root which appears 𝑑 times.

Substituting

𝑞 𝒙 =
∏7 𝑞7 𝒙7 ∏; 𝑞;(𝑥;)
∏7∏;∈=(7) 𝑞;(𝑥;)

into
𝐹 𝑞 =<

'
𝑞 𝒙 𝐸 𝒙 +<

'
𝑞 𝒙 ln 𝑞(𝒙)

we get
𝐹 𝑞

= −<
7I@

B

<
𝒙!
𝑞7 𝒙7 ln 𝜓7 𝒙7 +<

7I@

B

<
𝒙𝒂
𝑞7 𝒙𝒂 ln

𝑞7(𝒙7)
∏;∈=(7) 𝑞;(𝑥;)

+<
;I@

=

<
'"
𝑞; 𝑥; ln 𝑞;(𝑥;)

Belief Propagation as Stationary
Point of Bethe Free Energy
Consider optimizing Bethe free energy subject to
constraints described. We form the Lagrangian

𝐿 = 𝐹IJ5KJ +9
+

𝛾+[1 −9
𝒙2

𝑞+ 𝒙𝒂] +9
(
𝛾([1 −9

L5

𝑞(𝑥(]

+ 9
(
9

+∈*(()
9

L5
𝜆+(𝑥([𝑞(𝑥(−9

𝒙2\'5
𝑞+ 𝒙𝒂]

Differentiating with respect to 𝑞((𝑥() and setting to 0
0 = −𝑑(+ 1 + ln 𝑞(𝑥(− 𝛾(+9

+∈* (
𝜆+(𝑥(

𝑞(𝑥(∝ exp −9
+∈* (

𝜆+(𝑥(=:
+∈*(()

𝑚+((𝑥()

where 𝑑(is the degree of node and 𝑚+((𝑥() =
exp(−𝜆+(𝑥()

𝐹34564 𝑞 = 𝑈34564 𝑞 − 𝐻34564(𝑞)

𝑈34564 𝑞 = −1
,78

9

1
"&
𝑞, 𝒙, ln 𝜓, 𝒙,

H34564

= −1
,78

9

1
𝒙𝒂
𝑞, 𝒙𝒂 ln

𝑞, 𝒙,
∏'∈< , 𝑞' 𝑥'

−1
'78

<

1
"(
𝑞' 𝑥' ln 𝑞'(𝑥')

𝐹34564 𝑞 = 𝑈34564 𝑞 − 𝐻34564(𝑞)

𝑈34564 𝑞 = −1
,78

9

1
"&
𝑞, 𝒙, ln 𝜓, 𝒙,

H34564

= −1
,78

9

1
𝒙𝒂
𝑞, 𝒙𝒂 ln

𝑞, 𝒙,
∏'∈< , 𝑞' 𝑥'

−1
'78

<

1
"(
𝑞' 𝑥' ln 𝑞'(𝑥')

Previously:

𝑞' 𝑥' ∝ exp −1
,∈< '

𝜆,' 𝑥'

Consider optimizing Bethe free energy subject to constraints
described

𝐿 = 𝐹)jklj +'
#

𝛾#[1 −'
𝒙$

𝑞# 𝒙𝒂] +'
1
𝛾1[1 −'

-&

𝑞1 𝑥1]

+ '
1
'

#∈&(1)
'

-&
𝜆#1 𝑥1 [𝑞1 𝑥1 −'

𝒙$\]&
𝑞# 𝒙𝒂]

Differentiating with respect to 𝑞# 𝒙𝒂 and setting to 0
0 = − ln𝜓# 𝒙# + 1 + ln 𝑞# 𝒙𝒂
− ln(

1∈& #
𝑞1 𝑥1 −𝛾# −'

1∈& #
𝜆#1 𝑥1

= − ln𝜓# 𝒙# + ln 𝑞# 𝒙𝒂 + 𝑐𝑜𝑛𝑠𝑡
+'

1∈&(#)
'

#∈&(1)
𝜆#1(𝑥1) −'

1∈& #
𝜆#1 𝑥1

𝑞# 𝒙𝒂 ∝ 𝜓# 𝒙# exp −'
1∈& #

'
m∈& 1 \\

𝜆m1 𝑥1

= 𝜓# 𝑥# (
1∈&(#)

(
m∈&(1)\\

𝑚m1(𝑥1)

where 𝑚m1 𝑥1 = exp(−𝜆m1 𝑥1)

For ∑7!\6 𝑞,(𝑥,) to be consistent with 𝑞%(𝑥%) = ∏f∈/(%)𝑚f%(𝑥%),
we get the belief propagation equation

𝑚,% 𝑥% =T
7!\6

𝜓, 𝑥, F
*∈/(,)\6

F
f∈/(*)\3

𝑚f*(𝑥*)

Stationary points of the Bethe free energy are fixed points of loopy belief
propagation updates

Previously:

𝑞% 𝑥% =F
f∈/(%)

𝑚f%(𝑥%)

𝑞, 𝒙𝒂 = 𝜓, 𝑥, ∏*∈/(,)∏ f∈/(*)\3𝑚f*(𝑥*)

[Fig from Yedidia et. al. 2005]

Bellman Update Contraction
We show that Bellman update is a contraction

𝐵𝑉! − 𝐵𝑉# ≤ 𝛾 𝑉! − 𝑉#

First we show that for any two functions 𝑓 𝑎 and 𝑔(𝑎)
|max
,

𝑓 𝑎 − max
,
𝑔 𝑎 | ≤ max

,
|𝑓 𝑎 − 𝑔 𝑎 |

To see this, assume consider the case where max
,
𝑓 𝑎 ≥ max

,
𝑔(𝑎). Then

|max
,
𝑓 𝑎 − max

,
𝑔 𝑎 | = max

,
𝑓 𝑎 − max

,
𝑔 𝑎

= 𝑓 𝑎∗ −max
,
𝑔 𝑎

≤ 𝑓 𝑎∗ − 𝑔 𝑎∗
≤ max

,
|𝑓 𝑎 − 𝑔 𝑎 |

where 𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥, 𝑓(𝑎). The case where max
,
𝑔 𝑎 ≥ max

,
𝑓 𝑎 is similar.

Now, for any state 𝑠
𝐵𝑉! 𝑠 − 𝐵𝑉# 𝑠

= �

�

𝑚𝑎𝑥, T
HA

𝑃 𝑠A 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠A + 𝛾𝑉! 𝑠′

− 𝑚𝑎𝑥, T
HA

𝑃 𝑠A 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠A + 𝛾𝑉# 𝑠′

≤ 𝑚𝑎𝑥, T
H2
𝑃 𝑠A 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠A + 𝛾𝑉! 𝑠′ −T

H2
𝑃 𝑠A 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠A + 𝛾𝑉# 𝑠′

= 𝛾𝑚𝑎𝑥, T
H2
𝑃 𝑠A 𝑠, 𝑎 (𝑉! 𝑠′ − 𝑉# 𝑠′)

= 𝛾 T
H2
𝑃(𝑠A|𝑠, 𝑎∗)(𝑉! 𝑠′ − 𝑉# 𝑠′)

where we have use |max
,

𝑓 𝑎 − max
,
𝑔 𝑎 | ≤ max

,
|𝑓 𝑎 − 𝑔 𝑎 |.

Finally, we show contraction
𝐵𝑉, − 𝐵𝑉V = max

T
|𝐵𝑉, 𝑠 − 𝐵𝑉V 𝑠 |

≤ 𝛾max
T

4
Th
𝑃 𝑠U 𝑠, 𝑎∗ 𝑉, 𝑠U − 𝑉V 𝑠U

≤ 𝛾max
T

𝑉, 𝑠 − 𝑉V 𝑠
= 𝛾 𝑉, − 𝑉V

