
Methods for Extremes



Motivation

Climate change impacts depend disproportionately on extreme events (e.g.
heat waves, extreme precipitation)
• Typical questions:

• How has the distribution of extreme events changed (or how is it
projected to change)?

• What is the “fraction of attributable risk” or “risk ratio” for an event
that has occurred?

• Extreme events are by definition rare, require principled methods for
their characterization



Example: Block Maximum Approach (humidity in Minneapolis)
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Classical Extreme Value Theory (Fisher-Tippet-Gnedenko Theorem)

Let X1, ..., Xn be i.i.d. and Mn = max{X1, ..., Xn}. If there exist
sequences {an} and {bn} such that (Mn − bn)/an converges to a
nondegenerate distribution F (z), then F (z) is a member of the
generalized extreme value (GEV) distribution:

F (z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ
}

for µ, ξ ∈ (−∞,∞) and σ > 0

• i.e., maxima approximately follow a
GEV distribution if n is big

See Coles (2001) and Cooley et al. (2019) for
reviews
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Block Maximum Approach

Typical approach:

• Take maximum over a block of time (e.g., yearly maximum) and
model with a GEV(µt, σt, ξt)
• Some or all parameters may change over time and with covariates

- may also be spatial processes

Terminology:
• zp is the return level associated with the return period 1/p if
Pr(Mn,t > zp) = 1− p
• i.e., the 10-year return level is the 90th percentile of the yearly

maximum distribution

• The risk ratio RR(z) = Pr(Mn,t1 > z)/Pr(Mn,t0 > z) is the ratio of
exceedance probabilities for a fixed event magnitude at two time
points



Example: Attribution for Hurricane Harvey Extreme
Precipitation

Risser and Wehner (2017) calculate increase in risk of Hurricane Harvey
precipitation accumulations due to anthropogenic climate change

(Figure adapted from Risser and Wehner (2017))



Block Maximum Tradeoffs

The block maximum approach involves a type of bias - variance tradeoff:

• Large block size needed for asymptotics to be appropriate

• Many blocks needed for efficient statistical estimation

Comparing estimates of ξ using 1- vs 10-year blocks:

(image adapted from Huang et al. (2016))



Caution

A naive analysis of annual maxima temperatures at Portland International
Airport, 1936-2020
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The Threshold Exceedance Approach (Pickands–Balkema–De Haan

theorem)

A complementary approach is to model threshold exceedances:

Let X1, ..., Xn be i.i.d. and suppose the maximum has a nondegenerate
limiting distribution. Then the limiting distribution of (Xi − u)|Xi > u is
a generalized Pareto distribution (GPD):

Pr(Xi − u ≤ y|Xi > u) ≈ 1−
(
1 +

ξy

σ̃

)−1/ξ

, y > 0

for large u, where ξ is the same parameter from the GEV distribution and
σ̃ = σ + ξ(u− µ).



Example: Exceedances of 95th percentile (humidity in Minneapolis)

Issues to watch out for:

• GPD approach allows you to make use of more data, but watch out
for temporal dependence (cluster identification)

• Threshold choice involves same tradeoffs as block size choice
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Multivariate and Spatial Extremes

Impacts may depend on extremes over a spatial domain and/or of multiple
variables
• Multivariate extension to componentwise maxima and exceedances,

but class of limiting distributions is wide
• Typically choose parametric subfamily accommodating different levels

of asymptotic dependence (limz→∞ Pr(Y > z|Z > z))
• May or may not address desired meaning of multivariate extreme event

• Spatial extension of GEV methodology is to max-stable processes
(Davison et al., 2019)
• Computational challenges in evaluating full likelihood
• Theory does not address temporally coherent extremes (componentwise

extremes)



Example: Exploring Extremal Dependence Networks

Extremal dependence for hurriance-season maximum rainfall

(Figure adapted from Huang et al. (2019))



Summary

Analyzing extreme events requires care

• Involves extrapolating into the tail of a distribution

• Classical methods rely on asymptotics for maxima or threshold
exceedances, but there are subtleties in their application
• Characterizing multivariate or spatial extremes is much more

challenging (conceptually, mathematically, computationally, etc.)

- Existing theory may not always correspond to climate community’s
conception of extremes

• Lots of work needed in developing and applying new methodologies
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Quantile Regression for Climate Science



Motivation

Climate extremes are important, but a climate extreme isn’t necessarily an
extreme value analysis extreme
• Extreme value analysis methods: parametric (asymptotic

justification), principled methods for extrapolating into tail of
distribution
• What is the e.g. “100 year event”? How has that changed?

• Quantile regression methods: nonparametric (more empirical),
useful for less extreme but still atypical events
• What is the e.g. 95th percentile? The 5th percentile? Have they

changed in different ways?



Example: Winter Temperature Trends
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Figure adapted from Rhines et al. (2017)



Quantile Regression

Quantile regression (Koenker and Bassett Jr, 1978) involves estimating the
τ th conditional quantile function, qτ (xi), of response yi given predictors xi
via the minimization problem

argmin ρτ (yi − qτ (xi)) , where ρt(u) = u× (τ − I(u < 0))
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Quantile Regression Illustration
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Quantile Regression Illustration
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Quantile Crossing

Quantile curves estimated separately
can cross. Proposed solutions include

• Reorder the estimates
(Chernozhukov et al., 2010)

• Stepwise estimation, adding
inequality constraints (e.g., Liu
and Wu (2009))

• Simultaneous estimation, adding
noncrossing constraints (e.g.,
Bondell et al. (2010))

x

y

15th percentile
median
85th percentile

−
1

0
1

2

0.2 0.4 0.6 0.8 1.0



Nonparametric Quantile Regression

Koenker et al. (1994) considers “quantile smoothing splines” solving

min ρτ (yi − qτ (xi)) + λV (q′τ (xi))),

where V (q′τ (xi))) =
∑n−1

i=1 |q′τ (xi+1)− q′τ (xi)| is the total variation
penalty on the derivative of qτ (xi) (and λ a tuning parameter).

• solution is a linear spline with knots at each observation xi
• convenient because problem is still a linear program

There are many alternatives, including those making use of neural networks
(see e.g. Cannon (2018) for an example analyzing precipitation extremes)



Example: Hot and dry events in the Southwest

McKinnon et al. (2021) considers the model
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Figure adapted from McKinnon et al. (2021)

Focus is on the lower
quantiles on historically hot
days

• See a decrease in the
5th percentile of specific
humidity on historically
hot days



Example: Hot and dry events in the Southwest
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Dry days that are
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Summary

Quantile regression provides an additional framework for studying changes
in more extreme events

• Can be used to study changes in conditional distributions as an end
goal or as an intermediate step (e.g., quantile mapping methods for
bias correction, coming next)
• As is typical, lots of room for innovation in both modeling and

computation to help address climate-specific questions

- flexibility vs. interpretability of models
- incorporating climate knowledge into models
- borrowing strength spatially
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Bias Correction Methods



Goals of “Bias Correction” Methods

Two sources of information about historical and future climate:
• Observations

• Informative about what has really happened, but
• Limited observational record, relatively small observed changes, and

does not speak directly to future changes

• Climate models
• Informative about changes in future scenarios of interest, but
• Models aren’t perfect, have “biases”

If an impacts modeler requires realistic future simulations of climate
variables, climate model output may be insufficient

• “Bias correction” methods combine information from model output
with observations to produce hopefully better-calibrated future
simulations
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Model- vs. Observation-based Methods (Cartoon
Illustration)
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Quantile Mapping Approaches

Idea: want to change the “whole distribution,” not just the mean.

Most popular methods are based on inverse transform sampling (called
“quantile mapping” in climate literature):

Say X has CDF FX(x). Then Ẑ = F−1Z (FX(X)) has CDF FZ(z).
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Problem: we don’t know the true future distribution
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Model- vs. Observation-based Quantile Mapping

Write

• Y (h) for an observed (historical) quantity and

• Ỹ (h) and Ỹ (f) for analogous historical and projected (future)
quantities from a GCM

A model-based approach: ideally,

Ŷ (f) = F−1
Y (f)

(
FỸ (f)

(
Ỹ (f)

))
1 Assume
F−1
Y (f)FỸ (f) = F−1

Y (h)FỸ (h)

2 Ŷ (f) = F−1
Y (h)(FỸ (h)(Ỹ (f)))

An observation-based approach:
ideally, Ŷ (f) = F−1

Y (f)

(
FY (h)

(
Y (h)

))
1 Assume
F−1
Y (f)FY (h) = F−1

Ỹ (f)
FỸ (h)

2 Ŷ (f) = F−1
Ỹ (f)

(FỸ (h)(Y (h)))

In practice, lots of important details / modifications

• Multiple variants based on what you’re assuming

• How to model and estimate? (Especially since none of these
distributions are constant in time.)
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Y (f)FỸ (f) = F−1

Y (h)FỸ (h)
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An observation-based approach:
ideally, Ŷ (f) = F−1
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Example: Observation-based temperature simulations

Haugen et al. (2019) propose simulating future temperature at time as

T̂
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t = m

(h)
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median

+(m̃
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t − m̃

(h)
t )

GCM change
in median

+r
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GCM change
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r
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Z
(h)
t = normalized

observations
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,

where the quantile function F−1
T̃

is modeled semiparametrically as a
function of year, day, and additional covariates using quantile regression
and additional details for extremal quantiles.

image adapted from Haugen et al. (2019)



Multivariate Methods

Climate change impacts can depend on multivariate and spatiotemporal
relationships.

• Day-to-day vs. interannual temperature variability

• Precipitation events over large or small geographic areas

• Humid vs. dry heat waves

images from
https://warm1069.com/keeping-animals-safe-in-a-heatwave/ and
https://www.theguardian.com/us-news/2021/jun/14/us-heatwave-southwest-utah-california-nevada-arizona



Cannon’s MBCn Method

Cannon (2018) proposes an iterative
method:

1 Random orthogonal rotation to
both climate model and
observational target datasets

2 Univariate (model-based)
quantile mapping to marginal
distributions

3 Rotate datasets back

4 Repeat until convergence

Idea is based on image processing
algorithms for color correction

Projecting fire risk from temperature,
humidity, wind speed, and precipitation
(image adapted from Cannon (2018))



Observation-based conditional quantile mapping

In Poppick and McKinnon (2020), we take a conditional approach
(simulating temperature and dew point):

1 Generate an observation-based temperature simulation accounting for
changes in mean and temporal covariance

- not discussed, involves Fourier methods for time series (see Poppick
et al. (2016))

2 Generate a dew point simulation conditional on the temperature
simulation using a quantile mapping approach.



Illustration, Minneapolis JJA Temperature and Dew Point

• CESM1-LE project increase in risk of
historically hot and humid events

• But underlying relationship differs from
observations

• Proposed simulation produces changes
that “look similar” to changes in
CESM1-LE

• Smaller increase in risk of historically
hot and humid events in simulation
compared to CESM1-LE



What Would It Mean for the GCM to Capture “Changes”?

Suppose effect of global mean temperature is the same in the GCM and
reality, i.e.,

F−1
log(Ỹd,y)

(τ)

GCM distribution

= α̃0,τ + g̃τ (d)

seasonality

+ α̃1,τ G̃y
↑

same effect of
global warming

↓

+ h̃τ (T̃d,y − µ̃d,y)

effect of local
temperature deviation

F−1log(Yd,y)
(τ)

real world
distribution

= α0,τ + gτ (d) + α̃1,τ G̃y + hτ (Td,y − µd,y)

where X̃ is a GCM quantity and X is the analogous real-world quantity



Change in risk of historically high humidity (conditional
95th percentile) on historically hot (95th percentile) day

Changes from 2071-2080 vs. 1996-2005
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• For historically high temperature, risk
of historically high dew point increases

• Increases are smaller in observation-
based simulation than in CESM1-LE



Summary

Bias correction methods blend observations and climate models to produce
(hopefully) better calibrated future simulations

• Most popular approaches involve “quantile mapping”, but differ in
• what is preserved from observations vs. model output
• how GCM “biases” or “changes” are encoded

• Important impacts may depend on multivariable and spatiotemporal
changes

• how to correct or adjust complex multivariate distribution?

• Bias corrected simulations also depend on underlying observations
and GCM output

• The machine learning/statistics community can help develop and
implement new methods, and better understand existing methods
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