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Goal of This Tutorial

• To help researchers and engineers in the field of machine learning 
tackle problems in control systems

• Control systems involve real-time decision making: a kind of 
artificial intelligence

• Overview of control theory that may be helpful for proper use of 
machine learning

• Primary focus: model predictive control (MPC) based on real-time 
optimization. MPC can address various control problems beyond 
such traditional control objectives as regulation and tracking.
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Outline

Part 1: Introduction to Control Systems
Part 2: Optimal Control and Model Predictive Control
Part 3: Real-Time Optimization for Model Predictive Control
Part 4: Advanced Topics in Model Predictive Control
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Outline of Part 1

• What is control system?
• Concepts and methods for analysis and design of control systems

• Mathematical models, modeling, identification, stability, etc. 
• Optimal control, adaptive/learning control, robust control, etc. 
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What is Control?
• To operate a system as desired

Block Diagram

What is System?
• Something changing dynamically according to inputs

System
OutputInput

Input and Output: 
Signals (Functions of Time)
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Control Systems

Systems kept upward by control against gravity

Inverted Pendulum Rocket
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Attitude Control System of a Rocket

Controller
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Actuator Rocket

Attitude 
Sensor

Attitude Angle

Wind

Control Signal
Direction of 

NozzleErrorReference 
Attitude

Attitude Signal

+

−



8

Feedback Control System (Closed-Loop)

Controller
(Computer) Actuator Controlled 

System

Sensor

Controlled Output

Disturbance

Control Signal
Control 
InputErrorReference

Output Signal

+

−

Feedback
• Actuator: signal → physical quantity
• Sensor: physical quantity → signal
• Actuator/sensor blocks are often omitted. 

𝑦𝑦𝑢𝑢𝑒𝑒𝑟𝑟
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Feedforward Control System (Open-Loop)

Controller
(Computer) Actuator Controlled 

System

Controlled Output
Control Signal

Control 
InputReference

• No sensor
• No disturbance



Control Systems are Everywhere

• Such machines as cars, ships, aircraft, and robots 
• Inputs: forces, torques, steering 
• Outputs: positions, velocities, directions

• Temperature, environment, economy, and epidemic 
• Inputs: heat, gas emissions, monetary policy, mask/vaccine mandate
• Outputs: temperature, atmospheric constituent, money supply, spread rate
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Control Engineering

• Methodology to analyze and design control systems
• Methodology based on mathematical models of control systems: 

Control Theory
• A lot of definitions, theorems and proofs: Stability, Controllability, 

Optimality, etc. 



Mathematical Models

• System: Mapping from input signal (function of time) to output signal
𝑦𝑦 = 𝑃𝑃(𝑢𝑢),    𝑃𝑃: Mapping between function spaces 

• Input-Output Model
𝑦𝑦 𝑛𝑛 (𝑡𝑡) = 𝐹𝐹 𝑦𝑦 𝑛𝑛−1 𝑡𝑡 ,⋯ , �̇�𝑦 𝑡𝑡 ,𝑦𝑦 𝑡𝑡 ,𝑢𝑢 𝑚𝑚 𝑡𝑡 ,⋯ , �̇�𝑢 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 , 𝑡𝑡

• State-Space Representation
�̇�𝑥 𝑡𝑡 = 𝑓𝑓 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 , 𝑡𝑡 ,   𝑥𝑥(𝑡𝑡): Vector of state variables 
𝑦𝑦 𝑡𝑡 = ℎ(𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 , 𝑡𝑡)

• Continuous-valued signals
• Continuous time / Discrete time: differential equations / difference equations
• Stochastic Systems: involves random variables
• Hybrid systems: mixture of continuous dynamics and discrete events

̇ Time Derivative
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Example: Mass-Spring System

• Input-Output Model (𝑦𝑦(𝑡𝑡): displacement, 𝑢𝑢(𝑡𝑡): external force)
𝑚𝑚�̈�𝑦 𝑡𝑡 + 𝑑𝑑�̇�𝑦 𝑡𝑡 + 𝑘𝑘𝑦𝑦 𝑡𝑡 = 𝑢𝑢(𝑡𝑡)

• State-Space Representation 
(𝑥𝑥1(𝑡𝑡): displacement, 𝑥𝑥2(𝑡𝑡): velocity, 𝑢𝑢(𝑡𝑡): external force)

�̇�𝑥1(𝑡𝑡)
�̇�𝑥2(𝑡𝑡) =

𝑥𝑥2(𝑡𝑡)

−
𝑘𝑘
𝑚𝑚
𝑥𝑥1 𝑡𝑡 −

𝑑𝑑
𝑚𝑚
𝑥𝑥2 𝑡𝑡 +

1
𝑚𝑚
𝑢𝑢(𝑡𝑡)

𝑦𝑦 𝑡𝑡 = 𝑥𝑥1(𝑡𝑡)

𝑘𝑘
𝑑𝑑

𝑚𝑚

𝑦𝑦(𝑡𝑡)

𝑢𝑢(𝑡𝑡)

Time History of 𝑦𝑦(𝑡𝑡)

Trajectory of 𝑥𝑥1 𝑡𝑡 , 𝑥𝑥2 𝑡𝑡
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Linear Time-Invariant (LTI) Systems

• Input-Output Model (Single-Input Single-Output: SISO)
𝑎𝑎𝑛𝑛𝑦𝑦 𝑛𝑛 𝑡𝑡 + 𝑎𝑎𝑛𝑛−1𝑦𝑦 𝑛𝑛−1 𝑡𝑡 + ⋯+ 𝑎𝑎1�̇�𝑦 𝑡𝑡 + 𝑎𝑎0𝑦𝑦 𝑡𝑡
= 𝑏𝑏𝑚𝑚𝑢𝑢 𝑚𝑚 𝑡𝑡 + ⋯+ 𝑏𝑏1�̇�𝑢 𝑡𝑡 + 𝑏𝑏0𝑢𝑢 𝑡𝑡

• State-Space Representation (Multiple-Input Multiple-Output: MIMO)
�̇�𝑥 𝑡𝑡 = 𝐴𝐴𝑥𝑥 𝑡𝑡 + 𝐵𝐵𝑢𝑢(𝑡𝑡) 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷: Matrices 
𝑦𝑦 𝑡𝑡 = 𝐶𝐶𝑥𝑥 𝑡𝑡 + 𝐷𝐷𝑢𝑢(𝑡𝑡)

• Transfer Function 𝑦𝑦 𝑠𝑠 = 𝑃𝑃 𝑠𝑠 𝑢𝑢(𝑠𝑠)

𝑦𝑦 𝑠𝑠 = 𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚+⋯+𝑏𝑏1𝑠𝑠+𝑏𝑏0
𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛+⋯+𝑎𝑎1𝑠𝑠+𝑎𝑎0

𝑢𝑢 𝑠𝑠 ,   𝑦𝑦 𝑠𝑠 = 𝐶𝐶 𝑠𝑠𝑠𝑠 − 𝐴𝐴 −1𝐵𝐵 + 𝐷𝐷 𝑢𝑢(𝑠𝑠)
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Modeling/Identification

• Modeling: Construction of mathematical models based on knowledge
• Model Structures: LTI, Wiener, Hammerstein, Volterra
• Model Transformation: Order Reduction, Structure Simplification
• Identification: Construction of mathematical models from data

• Parametric/Nonparametric
• Prediction Error Method
• Subspace Identification
• Learning Dynamical Systems

L. Ljung: System Identification: Theory for the User, Prentice Hall (1998)
O. Nelles: Nonlinear System Identification, Springer (2001);  S. A. Billings: Nonlinear System Identification, Wiley (2013)
K. Fujimoto, J. M. A. Scherpen: Balanced Realization and Model Order Reduction for Nonlinear Systems Based on Singular Value 
Analysis; SIAM J. Contr. and Optim., 48(7), 4591-4623 (2010)
T. Ohtsuka: Model Structure Simplification of Nonlinear Systems via Immersion; IEEE Trans. Autom. Contr., 50(5), 607-618 (2005) 15



Analysis

• Stability: Input-Output, Lyapunov, Input-to-State
• Gain: 𝑦𝑦 ≤ 𝛾𝛾 𝑢𝑢 + 𝛽𝛽,     � norm of a signal
• Passivity, Dissipativity
• LTI: Frequency Response 𝐺𝐺(𝑗𝑗𝜔𝜔) (𝑗𝑗 = −1), Bode Plot, Vector Locus
• Controllability/Reachability (Existence of Input Signal for Given 

Initial/Terminal State)
• Observability (Uniqueness of Initial State for Given Output Signal)
• Invariance of a Set/Manifold (Unreachability, Safety Guarantee)
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Stability Analysis

• LTI: Routh/Hurwitz Criterion, Nyquist Criterion, Eigenvalues
• Lyapunov Function: Let 𝑥𝑥 = 0 be an equilibrium point of �̇�𝑥 𝑡𝑡 =
𝑓𝑓 𝑥𝑥(𝑡𝑡) . If there is a continuously differentiable function 𝑉𝑉(𝑥𝑥) in a 
neighborhood 𝐷𝐷 of 𝑥𝑥 = 0 such that 𝑉𝑉 0 = 0, 𝑉𝑉 𝑥𝑥 > 0 in 𝐷𝐷 − {0}
and �̇�𝑉 𝑥𝑥(𝑡𝑡) < 0 in 𝐷𝐷 − {0} then 𝑥𝑥 = 0 is asymptotically stable. 

• Convex Optimization to Find 𝑉𝑉(𝑥𝑥): Linear Matrix Inequalities (LMI), 
Sum-of-Squares (SOS) Programming

Stability can be checked without solving differential equations!

S. Boyd, et al.: Linear Matrix Inequalities in Systems and Control Theory, SIAM (1994)
D. Henrion, A. Garulli (Eds.): Positive Polynomials in Control, Springer (2005) 17



Stability Analysis

• Small Gain Theorem: Suppose two systems 𝑃𝑃1 and 𝑃𝑃2 have finite gains 
𝛾𝛾1 and 𝛾𝛾2. If 𝛾𝛾1𝛾𝛾2 < 1 holds then their feedback connection also has a 
finite gain as a system with input (𝑢𝑢1,𝑢𝑢2) and output (𝑒𝑒1, 𝑒𝑒2).  

• Passivity Theorem: If two systems 𝑃𝑃1 and 𝑃𝑃2 are passive then their 
feedback connection is also passive.

𝑃𝑃1

𝑃𝑃2

+

+
+

−

𝑢𝑢1

𝑢𝑢2

𝑦𝑦1

𝑦𝑦2

𝑒𝑒1

𝑒𝑒2

Feedback Connection

Stability can be guaranteed 
without detailed models!

H. K. Khalil: Nonlinear Control, Pearson (2015)
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Control Design

• For a given system 𝑦𝑦 = 𝑃𝑃(𝑢𝑢), find a controller (a system) 𝑢𝑢 = 𝐾𝐾(𝑦𝑦)
so that design specifications are satisfied. 

• Not always but often formulated as a constrained optimization problem. 

𝑃𝑃

𝐾𝐾

+

+
+

+

external signal
𝑤𝑤

𝑣𝑣
external signal

controlled output
𝑦𝑦

𝑢𝑢
control input

Feedback Control System
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Control Design Methods

• PID (Proportional-Integral-Derivative), Loop Shaping
• State Feedback (+ State Estimation)

• Pole Assignment, Control Lyapunov Function
• Optimal Control
• Sliding Mode Control
• Feedback Linearization

• Adaptive Control, Iterative Learning Control
• Robust Control
• Distributed Control
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Optimal Control

Find 𝑢𝑢(𝑡𝑡) (feedforward) or 𝑢𝑢(𝑥𝑥, 𝑡𝑡) (state feedback) (0 ≤ 𝑡𝑡 ≤ 𝑇𝑇)

minimizing  𝐽𝐽 = 𝜑𝜑 𝑥𝑥 𝑇𝑇 ,𝑇𝑇 + ∫0
𝑇𝑇 𝐿𝐿 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 , 𝑡𝑡 𝑑𝑑𝑡𝑡

subject to  �̇�𝑥 𝑡𝑡 = 𝑓𝑓 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 , 𝑡𝑡 ,   𝑥𝑥(0) given
𝐶𝐶 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 , 𝑡𝑡 = 0
𝐷𝐷 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 , 𝑡𝑡 ≤ 0
𝜓𝜓 𝑥𝑥 𝑇𝑇 ,𝑇𝑇 = 0,   𝜒𝜒 𝑥𝑥 𝑇𝑇 ,𝑇𝑇 ≤ 0

Terminal time 𝑇𝑇 can be either given or free. 

M. Athans, P. Falb: Optimal Control, McGraw-Hill College (1966)
A. Bryson and Y.-C. Ho: Applied Optimal Control, Routledge (1975) 21



Adaptive Control, Iterative Learning Control

• Adaptive Control: Parameterized controller 𝑢𝑢 = 𝐾𝐾(𝑦𝑦; 𝜃𝜃) and 
adaptation law to adjust 𝜃𝜃

e.g.) on-line estimation of unknown parameter 𝜃𝜃 in the system model 

• Iterative Learning Control: Iteratively update 𝑢𝑢(𝑡𝑡) (0 ≤ 𝑡𝑡 ≤ 𝑇𝑇) to 
achieve perfect tracking based only on tracking error 𝑒𝑒(𝑡𝑡) (0 ≤ 𝑡𝑡 ≤ 𝑇𝑇)
with almost no prior knowledge on the system

e.g.) 𝑢𝑢𝑘𝑘+1 𝑡𝑡 = 𝑢𝑢𝑘𝑘 𝑡𝑡 + 𝐾𝐾�̈�𝑒𝑘𝑘(𝑡𝑡)

K. S. Narendra, A. M. Annaswamy: Stable Adaptive Systems, Prentice Hall (1989)
S. Arimoto, et al.: Bettering Operation of Robots by Learning; Journal of Robotic Systems, 1(2), 123-140 (1984) 22



Robust Control

• Uncertainty: System ∆ in a unit ball 𝐵𝐵 = ∆: ∆ < 1
• ∆ is uncertain but deterministic
• Robust Stabilization: Find a controller 𝐾𝐾 such that 

the closed-loop system from 𝑤𝑤 to 𝑧𝑧 is stable 
for any ∆∈ 𝐵𝐵.

• Robust Performance: Find a controller 𝐾𝐾 such that 
performance specifications from 𝑤𝑤 to 𝑧𝑧 are satisfied 
for any ∆∈ 𝐵𝐵. 

• Basic Tool: Small Gain Theorem Feedback Control System 
with Uncertainty

𝑃𝑃

𝐾𝐾

𝑦𝑦

∆

𝑧𝑧

𝑢𝑢

𝑤𝑤

Uncertainty

K. Zhou, J. C. Doyle: Essentials of Robust Control, Prentice Hall (1997) 23



Distributed Control

• Find a controller 𝐾𝐾 utilizing limited information
𝑢𝑢𝑖𝑖 = 𝐾𝐾𝑖𝑖 𝑦𝑦𝑗𝑗𝑖𝑖1 ,⋯ ,𝑦𝑦𝑗𝑗𝑖𝑖𝑚𝑚

• Multi-agent system: Global task (formation, consensus, coverage, 
etc.) by a set of systems (agents) with distributed control

• Decentralized Control: No communication between controllers
𝑢𝑢𝑖𝑖 = 𝐾𝐾𝑖𝑖 𝑦𝑦𝑖𝑖

G. Antonelli: Interconnected Dynamic Systems: An Overview on Distributed Control; IEEE Contr. Sys. Magazine, 33(1), 76-88  (2013)
R. R. Negenborn, J. M. Maestre: Distributed Model Predictive Control: An Overview and Roadmap of Future Research 
Opportunities; IEEE Contr. Sys. Magazine, 34(4), 87-97  (2014) 24



Summary

• Control systems involve real-time decision making, a kind of artificial 
intelligence.

• Control systems are everywhere from machines to environment and 
society. 

• Control theory provides mathematical tools for analysis and design of 
control systems. 

• Mathematical models of systems play crucial roles in control theory. 
However, there are some nice methods to deal with qualitative 
characteristics and uncertainties without detailed models. 
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Outline

Part 1: Introduction to Control Systems
Part 2: Optimal Control and Model Predictive Control
Part 3: Real-Time Optimization for Model Predictive Control
Part 4: Advanced Topics in Model Predictive Control
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Outline of Part 2

• Optimal control problem, Euler-Lagrange Equations (ELE), Hamilton-
Jacobi-Bellman Equation (HJBE), and numerical solution methods

• Model Predictive Control (MPC): problem formulation and difficulties, 
computation and stability
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Optimal Control Problem

Find 𝑢𝑢(𝑡𝑡) (feedforward) or 𝑢𝑢(𝑥𝑥, 𝑡𝑡) (state feedback) (0 ≤ 𝑡𝑡 ≤ 𝑇𝑇)

minimizing  𝐽𝐽 = 𝜑𝜑 𝑥𝑥 𝑇𝑇 ,𝑇𝑇 + ∫0
𝑇𝑇 𝐿𝐿 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 , 𝑡𝑡 𝑑𝑑𝑡𝑡

subject to  �̇�𝑥 𝑡𝑡 = 𝑓𝑓 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 , 𝑡𝑡 ,   𝑥𝑥(0) given

We omit the constraints except for the state equation for simplicity. They can be 
handled by penalty functions or barrier functions. The terminal time 𝑇𝑇 is assumed 
to be given. 

M. Athans, P. Falb: Optimal Control, McGraw-Hill College (1966)
A. Bryson and Y.-C. Ho: Applied Optimal Control, Routledge (1975) 4



Euler-Lagrange Equations (ELE): 
Stationary Conditions for Optimal Trajectory

�̇�𝑥 𝑡𝑡 = 𝑓𝑓 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 , 𝑡𝑡 ,    𝑥𝑥(0) given
�̇�𝜆 𝑡𝑡 = −𝛻𝛻𝑥𝑥𝐻𝐻 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 , 𝜆𝜆 𝑡𝑡 , 𝑡𝑡 ,    𝜆𝜆 𝑇𝑇 = 𝛻𝛻𝑥𝑥𝜑𝜑 𝑥𝑥 𝑇𝑇 ,𝑇𝑇
𝛻𝛻𝑢𝑢𝐻𝐻 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 , 𝜆𝜆 𝑡𝑡 , 𝑡𝑡 = 0

where
𝐻𝐻 𝑥𝑥,𝑢𝑢, 𝜆𝜆, 𝑡𝑡 = 𝐿𝐿 𝑥𝑥,𝑢𝑢, 𝑡𝑡 + 𝜆𝜆T𝑓𝑓 𝑥𝑥,𝑢𝑢, 𝑡𝑡 : Hamiltonian
𝜆𝜆(𝑡𝑡): costate or adjoint variable

Solution 𝑢𝑢(𝑡𝑡): Candidate of optimal feedforward control for given 𝑥𝑥(0)

Nonlinear Two-Point Boundary-
Value Problem (TPBVP)

5



Numerical Solution of ELE

• Iterative search in the space of functions 𝑢𝑢 𝑡𝑡 (single shooting) or 
(𝑥𝑥 𝑡𝑡 , 𝜆𝜆 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 ) (multiple shooting) 

• Gradient methods: Steepest descent, conjugate gradient method
• Newton’s method
• Quasi-Newton method
• Some special structures are exploited
• Time horizon is normally discretized for numerical solution
• Computationally demanding!

A. Bryson and Y.-C. Ho: Applied Optimal Control, Routledge (1975)
J. T. Betts: Practical Methods for Optimal Control Using Nonlinear Programming, 3rd Ed., SIAM (2020) 6



Hamilton-Jacobi-Bellman Equation (HJBE)

Value Function

𝑉𝑉 𝑥𝑥, 𝑡𝑡 = min
𝑢𝑢[𝑡𝑡,𝑇𝑇]

𝜑𝜑 𝑥𝑥(𝑇𝑇) + �
𝑡𝑡

𝑇𝑇
𝐿𝐿 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 , 𝑡𝑡 𝑑𝑑𝑡𝑡

HJBE

−𝛻𝛻𝑡𝑡𝑉𝑉 𝑥𝑥, 𝑡𝑡 = min
𝑢𝑢
𝐻𝐻 𝑥𝑥,𝑢𝑢,𝛻𝛻𝑥𝑥𝑉𝑉 𝑥𝑥, 𝑡𝑡 , 𝑡𝑡 ,   𝑉𝑉 𝑥𝑥,𝑇𝑇 = 𝜑𝜑(𝑥𝑥,𝑇𝑇)

Optimal Control
𝑢𝑢𝑜𝑜𝑜𝑜𝑡𝑡 𝑥𝑥, 𝑡𝑡 = arg min

𝑢𝑢
𝐻𝐻 𝑥𝑥,𝑢𝑢,𝛻𝛻𝑥𝑥𝑉𝑉 𝑥𝑥, 𝑡𝑡 , 𝑡𝑡

Nonlinear Partial Differential Equation (PDE)

State Feedback!
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Solvable Example: Linear Quadratic Control

Linear system: �̇�𝑥 𝑡𝑡 = 𝐴𝐴𝑥𝑥 𝑡𝑡 + 𝐵𝐵𝑢𝑢(𝑡𝑡)
Quadratic cost: 

𝐽𝐽 =
1
2
𝑥𝑥T 𝑇𝑇 𝑆𝑆𝑓𝑓𝑥𝑥 𝑇𝑇 + �

0

𝑇𝑇 1
2
𝑥𝑥T 𝑡𝑡 𝑄𝑄𝑥𝑥 𝑡𝑡 + 𝑢𝑢T 𝑡𝑡 𝑅𝑅𝑢𝑢 𝑡𝑡 𝑑𝑑𝑡𝑡

Optimal control: 𝑢𝑢𝑜𝑜𝑜𝑜𝑡𝑡 𝑥𝑥, 𝑡𝑡 = −𝑅𝑅−1𝐵𝐵T𝑆𝑆 𝑡𝑡 𝑥𝑥
Riccati differential equation: 

−�̇�𝑆 𝑡𝑡 = 𝐴𝐴T𝑆𝑆 𝑡𝑡 + 𝑆𝑆 𝑡𝑡 𝐴𝐴 − 𝑆𝑆 𝑡𝑡 𝐵𝐵𝑅𝑅−1𝐵𝐵T𝑆𝑆 𝑡𝑡 + 𝑄𝑄,   𝑆𝑆 𝑇𝑇 = 𝑆𝑆𝑓𝑓
Value function: 𝑉𝑉 𝑥𝑥, 𝑡𝑡 = 1

2
𝑥𝑥T𝑆𝑆 𝑡𝑡 𝑥𝑥

Costate in ELE: 𝜆𝜆 𝑡𝑡 = 𝑆𝑆 𝑡𝑡 𝑥𝑥(𝑡𝑡)

State Feedback with 
a Time-Varying Gain Matrix

8



Numerical Solution of HJBE

• If 𝑉𝑉 𝑥𝑥, 𝑡𝑡 can be stored for all 𝑥𝑥, 𝑡𝑡 then HJBE can be solved 
numerically backward in time starting from 𝑉𝑉 𝑥𝑥,𝑇𝑇 = 𝜑𝜑(𝑥𝑥)

• However, impractical due to explosive growth of computation and 
storage for high dimensional systems: curse of dimensionality

• Approximate solution methods: power series (Al’Brekht ’61; Lukes ‘69), 
Galerkin method (Beard et al. ‘97), interpolation (Kreiselmeier&Birkhölzer ‘94), 
neural networks (Goh ‘93), RBF (Huang et al. ‘06), GPR (Fujimoto et al. ‘18), etc.  

9



Infinite-Horizon Problem

Stationary solution to infinite-horizon optimal control problem
HJE: 𝐻𝐻 𝑥𝑥,𝑢𝑢(𝑥𝑥, 𝜆𝜆), 𝜆𝜆 = 0,    𝜆𝜆 = 𝛻𝛻𝑥𝑥𝑉𝑉(𝑥𝑥)

𝑢𝑢 𝑥𝑥, 𝜆𝜆 = arg min
𝑢𝑢
𝐻𝐻(𝑥𝑥,𝑢𝑢, 𝜆𝜆)

ELE as a Hamiltonian System (Canonical Equations)
�̇�𝑥 𝑡𝑡 = 𝛻𝛻𝜆𝜆𝐻𝐻 𝑥𝑥 𝑡𝑡 , 𝜆𝜆 𝑡𝑡
�̇�𝜆 𝑡𝑡 = −𝛻𝛻𝑥𝑥𝐻𝐻(𝑥𝑥 𝑡𝑡 , 𝜆𝜆 𝑡𝑡 )

where 𝐻𝐻 𝑥𝑥, 𝜆𝜆 ≔ 𝐻𝐻(𝑥𝑥,𝑢𝑢 𝑥𝑥, 𝜆𝜆 , 𝜆𝜆)
Terminal condition for 𝜆𝜆 𝑡𝑡 (𝑡𝑡 → ∞)?

10



Stabile Manifold in Infinite-Horizon Problem

Stable Manifold:  𝐻𝐻 𝑥𝑥, 𝜆𝜆 = 0
and 𝑥𝑥 𝑡𝑡 , 𝜆𝜆 𝑡𝑡 → 0

Unstable Manifold:  𝐻𝐻 𝑥𝑥, 𝜆𝜆 = 0
and 𝑥𝑥 𝑡𝑡 , 𝜆𝜆 𝑡𝑡 → ∞

𝜆𝜆

𝑥𝑥

Stabilizing solution to infinite-horizon problem 
= Stable manifold of Hamiltonian system

(van der Schaft ’91)

Solution methods to 
find stable manifold

(Sakamoto&van der Schaft ’08; O ‘11)
11



Outline of Part 2

• Optimal control problem, Euler-Lagrange Equations (ELE), Hamilton-
Jacobi-Bellman Equation (HJBE), and numerical solution methods

• Model Predictive Control (MPC): problem formulation and difficulties, 
computation and stability

12



What is MPC?
Feedback control by real-time optimization
of the system response over a finite future.   

Current control action is 
determined by optimization 
over a foreseeable future.

13



What is MPC?
Feedback control by real-time optimization
of the system response over a finite future.   

Control action is 
updated at each 
time to utilize new 
information.

14



What is MPC?
Feedback control by real-time optimization
of the system response over a finite future.   

15



What is MPC?
A General Framework for Feedback Control 
of Nonlinear Dynamical Systems

16



Receding Horizon

t

t t+T

u

Current 
Action

Real-Time Prediction and 
Optimization of Response over 
a Finite Future

17



Performance Index

State Equation and Constraint

OCP in MPC (Nonlinear MPC; NMPC) 

�̇�𝑥(𝑡𝑡) = 𝑓𝑓 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 , 𝑡𝑡 ,   𝐶𝐶 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 , 𝑡𝑡 = 0

𝐽𝐽 = 𝜑𝜑 𝑥𝑥 𝑡𝑡 + 𝑇𝑇 , 𝑡𝑡 + 𝑇𝑇 + �
𝑡𝑡

𝑡𝑡+𝑇𝑇
𝐿𝐿 𝑥𝑥 𝜏𝜏 ,𝑢𝑢 𝜏𝜏 , 𝜏𝜏 𝑑𝑑𝜏𝜏

Receding Horizon

NMPC as State Feedback

𝑢𝑢(𝑡𝑡) = 𝑢𝑢𝑜𝑜𝑜𝑜𝑡𝑡 𝑡𝑡; 𝑥𝑥 𝑡𝑡 , 𝑡𝑡

Initial Value of Optimal Control 
over 𝑡𝑡 ≤ 𝜏𝜏 ≤ 𝑡𝑡 + 𝑇𝑇

𝐶𝐶 ≤ 0 ⇔ 𝐶𝐶 + 𝑣𝑣2 = 0

18



Fixed Horizon over 0 ≤ 𝜏𝜏 ≤ 𝑇𝑇

Parameterized OCP in MPC

𝑑𝑑𝑥𝑥∗(𝜏𝜏;𝑡𝑡)
𝑑𝑑𝜏𝜏

= 𝑓𝑓 𝑥𝑥∗ 𝜏𝜏; 𝑡𝑡 ,𝑢𝑢∗ 𝜏𝜏; 𝑡𝑡 , 𝜏𝜏 + 𝑡𝑡 ,   𝑥𝑥∗ 0; 𝑡𝑡 = 𝑥𝑥(𝑡𝑡)
𝐶𝐶 𝑥𝑥∗ 𝜏𝜏; 𝑡𝑡 ,𝑢𝑢∗ 𝜏𝜏; 𝑡𝑡 , 𝜏𝜏 + 𝑡𝑡 = 0

𝐽𝐽 = 𝜑𝜑 𝑥𝑥∗ 𝑇𝑇; 𝑡𝑡 ,𝑇𝑇 + 𝑡𝑡 + �
0

𝑇𝑇
𝐿𝐿 𝑥𝑥∗ 𝜏𝜏; 𝑡𝑡 ,𝑢𝑢∗ 𝜏𝜏; 𝑡𝑡 , 𝜏𝜏 + 𝑡𝑡 𝑑𝑑𝜏𝜏

Actual Input to the System
𝑢𝑢(𝑡𝑡) = 𝑢𝑢𝑜𝑜𝑜𝑜𝑡𝑡∗ 0; 𝑡𝑡

Actual State at t

Depends on initial condition 
𝑥𝑥∗ 0; 𝑡𝑡 = 𝑥𝑥(𝑡𝑡) (actual state) 

19



History of MPC

• Early work (Coales&Noton ‘56), (Propoi ‘63), (Merriam ‘64)

• LQR variant (Kleinmann ‘70), (Thomas ‘75), (Kwon&Pearson ‘77)

• Process Control: 
PFC (Richalet et al. ’78), DMC (Cutler&Ramaker ‘80), QDMC (Garcia&Morshedi ‘86), 
GPC (Clarke et al. ‘87)

• Stability of NMPC (Chen&Shaw ‘82), (Mayne&Michalska ‘90), (Chen&Allgöwer ‘98), 
(Jadbabaie et al. ‘01), etc. 

• Numerical methods (90s-): mp-QP, RTO, etc. 

J. M. Maciejowski: Model Predictive Control with Constraints, Prentice Hall (2000)
T. Ohtsuka: Research Trend of Nonlinear Model Predictive Control; Systems, Contr. & Info., 61(2), 42-50 (2017) (in Japanese) 20



Parameterized ELE in MPC

𝑑𝑑𝑥𝑥∗(𝜏𝜏;𝑡𝑡)
𝑑𝑑𝜏𝜏

= 𝑓𝑓 𝑥𝑥∗ 𝜏𝜏; 𝑡𝑡 ,𝑢𝑢∗ 𝜏𝜏; 𝑡𝑡 , 𝜏𝜏 + 𝑡𝑡 ,    𝑥𝑥∗ 0; 𝑡𝑡 = 𝑥𝑥(𝑡𝑡)
𝑑𝑑𝜆𝜆∗(𝜏𝜏;𝑡𝑡)

𝑑𝑑𝜏𝜏
= −𝛻𝛻𝑥𝑥𝐻𝐻 𝑥𝑥∗ 𝜏𝜏; 𝑡𝑡 ,𝑢𝑢∗ 𝜏𝜏; 𝑡𝑡 , 𝜆𝜆∗ 𝜏𝜏; 𝑡𝑡 , 𝜏𝜏 + 𝑡𝑡 ,    

𝜆𝜆∗ 𝑇𝑇; 𝑡𝑡 = 𝛻𝛻𝑥𝑥𝜑𝜑 𝑥𝑥∗ 𝑇𝑇; 𝑡𝑡 ,𝑇𝑇 + 𝑡𝑡
𝛻𝛻𝑢𝑢𝐻𝐻 𝑥𝑥∗ 𝜏𝜏; 𝑡𝑡 ,𝑢𝑢∗ 𝜏𝜏; 𝑡𝑡 , 𝜆𝜆∗ 𝜏𝜏; 𝑡𝑡 , 𝜏𝜏 + 𝑡𝑡 = 0

Actual State at t

Nonlinear TPBVP

Actual Input to the System
𝑢𝑢(𝑡𝑡) = 𝑢𝑢𝑜𝑜𝑜𝑜𝑡𝑡∗ 0; 𝑡𝑡

21



HJBE in MPC
Value Function 

𝑉𝑉 𝑥𝑥, 𝜏𝜏; 𝑡𝑡 = min
𝑢𝑢[𝜏𝜏,𝑇𝑇]

𝜑𝜑 𝑥𝑥∗ 𝑇𝑇; 𝑡𝑡 ,𝑇𝑇 + 𝑡𝑡 + �
𝜏𝜏

𝑇𝑇
𝐿𝐿 𝑥𝑥∗ 𝜏𝜏′; 𝑡𝑡 ,𝑢𝑢∗ 𝜏𝜏′; 𝑡𝑡 , 𝜏𝜏′ + 𝑡𝑡 𝑑𝑑𝜏𝜏′

HJBE
−𝛻𝛻𝜏𝜏𝑉𝑉 𝑥𝑥, 𝜏𝜏; 𝑡𝑡 = min

𝑢𝑢
𝐻𝐻 𝑥𝑥,𝑢𝑢,𝛻𝛻𝑥𝑥𝑉𝑉 𝑥𝑥, 𝜏𝜏; 𝑡𝑡 , 𝜏𝜏 + 𝑡𝑡 ,   𝑉𝑉 𝑥𝑥,𝑇𝑇; 𝑡𝑡 = 𝜑𝜑(𝑥𝑥,𝑇𝑇 + 𝑡𝑡)

Optimal Control
𝑢𝑢𝑜𝑜𝑜𝑜𝑡𝑡∗ 𝑥𝑥, 𝜏𝜏; 𝑡𝑡 = arg min

𝑢𝑢
𝐻𝐻 𝑥𝑥,𝑢𝑢,𝛻𝛻𝑥𝑥𝑉𝑉 𝑥𝑥, 𝜏𝜏; 𝑡𝑡 , 𝜏𝜏 + 𝑡𝑡 , 

𝑢𝑢𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥, 𝑡𝑡 = 𝑢𝑢𝑜𝑜𝑜𝑜𝑡𝑡∗ 𝑥𝑥, 0; 𝑡𝑡

In a time-invariant case (time 𝑡𝑡 does not appear explicitly): 
𝑢𝑢𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥 = 𝑢𝑢𝑜𝑜𝑜𝑜𝑡𝑡∗ 𝑥𝑥, 0

Nonlinear PDE

22



Difficulty in MPC: Solution Methods
ELE
• Open-loop solution for a given state
• Iterative methods: gradient methods, Newton’s method 

(computationally demanding for real-time implementation)

HJBE
• Closed-loop solution (state feedback)
• Explosive growth of computation and storage for high dimensional 

systems (curse of dimensionality)

Implementation of MPC for fast and complex nonlinear systems
with sampling periods of the order of milliseconds is challenging! 23



Difficulty in MPC: Closed-Loop Stability

Closed-loop stability of (time-invariant) MPC with a finite horizon? 

From HJBE
�̇�𝑉𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥 = −𝐿𝐿 𝑥𝑥,𝑢𝑢𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥 − 𝛻𝛻𝜏𝜏𝑉𝑉(𝑥𝑥, 0)

𝑢𝑢𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥 = 𝑢𝑢𝑜𝑜𝑜𝑜𝑡𝑡(𝑥𝑥, 0)

Key Idea: Value function 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥 = 𝑉𝑉(𝑥𝑥, 0) can be a Lyapunov function. 

24



Methods for Guaranteeing Stability

• Terminal constraint 𝑥𝑥∗ 𝑇𝑇; 𝑡𝑡 = 0
• Terminal constraint 𝑥𝑥∗(𝑇𝑇; 𝑡𝑡) ∈ Ω, a stabilizing feedback to make Ω

invariant, and a bound on the infinite horizon cost in Ω
• Control Lyapunov function (CLF) as the terminal penalty 𝜑𝜑(𝑥𝑥) and a 

feedback 𝑢𝑢 = 𝑘𝑘(𝑥𝑥) such that
𝜕𝜕𝜑𝜑(𝑥𝑥)
𝜕𝜕𝑥𝑥

𝑓𝑓 𝑥𝑥, 𝑘𝑘 𝑥𝑥 ≤ −𝐿𝐿(𝑥𝑥, 𝑘𝑘 𝑥𝑥 )

Stability guarantee of MPC is challenging! 

D. Q. Mayne, et al.: Constrained Model Predictive Control: Stability and Optimality; Automatica, 36(6), 789-814 (2000)
25



Some Variants of MPC

• Robust MPC (Constraint satisfaction under uncertainty)

• Stochastic MPC (Open-loop/closed-loop optimization, chance constraint)

• Adaptive MPC
• Learning MPC (Kabzan et al. ‘19; Gros&Zanon ’20; Rosolia&Borrelli ‘20)

Cf. MPC in Learning: MPC-guided policy search (Zhang et al. ‘16)

• Distributed MPC
• Output MPC
• Moving Horizon Estimation (Fitting model and measurement over a finite past)

J. B. Rawlings, et al.: Model Predictive Control: Theory, Computation, and Design, 2nd Ed., Nob Hill Publishing (2017)
A. Mesbah: Stochastic Model Predictive Control: An Overview and Perspectives for Future Research; IEEE Control Systems 
Magazine, 36(6), 34-44 (2016) 26



Summary

• MPC: State feedback control by real-time optimization over a finite 
future

• General framework for feedback control of nonlinear systems
• Difficulties: Solution methods and stability guarantee
• Implementation of MPC for fast and complex nonlinear systems with 

sampling periods of the order of milliseconds is challenging! 
• There are some variants of MPC.

27
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Part 1: Introduction to Control Systems
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Outline of Part 3

• Real-Time Optimization (RTO) Algorithm for Nonlinear MPC (NMPC)
• Automatic Code Generation Tool
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Solution Methods of MPC

• Off-Line Methods (Explicit MPC)
• (Bemporad et al. ’02), (Zeilinger et al. ‘11), etc. 

• On-Line Methods (Real-Time Optimization; RTO)
• (O ‘97), (O ‘04) Real-Time Algorithm as ODE
• (Diehl et al. ‘05), (Alamir ‘06), (DeHaan&Guay ‘07), (Zavala&Biegler ‘09), 

(Graichen ‘12), (Stella et al. ‘17),  etc. 
• (Deng&O ‘19) Parallel Algorithm

4

I. J. Wolf, W. Marquardt: Fast NMPC Schemes for Regulatory and Economic NMPC – A Review; J. Process Contr., 44, 162-183 (2016)
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Numerical Algorithm for NMPC

5

An iterative search of an optimal solution within 
a short sampling period may fail to converge.   

However…

The small change in the optimal solution 
during the short sampling period can be traced 
without an iterative search! 



Numerical Algorithm for NMPC

6

However…

The small change in the optimal solution 
during the short sampling period can be traced 
without an iterative search! 

Only one linear equation at each 
sampling time: Continuation/GMRES (O ‘04)

An iterative search of an optimal solution within 
a short sampling period may fail to converge.   



Discretization of the Horizon
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t t+T

u

Current 
Action

u*0(t)
u*1(t)

u*N-1(t)

Input Sequence over the Horizon at Time t: 
𝑈𝑈(𝑡𝑡) = 𝑢𝑢0∗𝑇𝑇(𝑡𝑡) 𝜇𝜇0∗𝑇𝑇(𝑡𝑡) ⋯ 𝑢𝑢𝑁𝑁−1∗𝑇𝑇 (𝑡𝑡) 𝜇𝜇𝑁𝑁−1∗𝑇𝑇 (𝑡𝑡) 𝑇𝑇

Actual Input: 𝑢𝑢 𝑡𝑡 = 𝑢𝑢0∗ 𝑡𝑡 ,   Lagrange Multiplier: 𝜇𝜇𝑖𝑖∗(𝑡𝑡)

Discretization Step ∆𝜏𝜏 = 𝑇𝑇
𝑁𝑁

≠ Sampling Period ∆𝑡𝑡



Discretized ELE

8

𝑥𝑥𝑖𝑖+1∗ 𝑡𝑡 = 𝑥𝑥𝑖𝑖∗ 𝑡𝑡 + 𝑓𝑓 𝑥𝑥𝑖𝑖∗ 𝑡𝑡 ,𝑢𝑢𝑖𝑖∗ 𝑡𝑡 ∆𝜏𝜏,   𝑥𝑥0∗ 𝑡𝑡 = 𝑥𝑥(𝑡𝑡)
𝜆𝜆𝑖𝑖∗ 𝑡𝑡 = 𝜆𝜆𝑖𝑖+1∗ 𝑡𝑡 + 𝛻𝛻𝑥𝑥𝐻𝐻 𝑥𝑥𝑖𝑖∗ 𝑡𝑡 ,𝑢𝑢𝑖𝑖∗ 𝑡𝑡 , 𝜆𝜆𝑖𝑖+1∗ 𝑡𝑡 ,𝜇𝜇𝑖𝑖∗ 𝑡𝑡 ∆𝜏𝜏

𝜆𝜆𝑁𝑁∗ 𝑡𝑡 = 𝛻𝛻𝑥𝑥𝜑𝜑(𝑥𝑥𝑁𝑁∗ 𝑡𝑡 )
𝛻𝛻𝑢𝑢𝐻𝐻 𝑥𝑥𝑖𝑖∗ 𝑡𝑡 ,𝑢𝑢𝑖𝑖∗ 𝑡𝑡 , 𝜆𝜆𝑖𝑖+1∗ 𝑡𝑡 ,𝜇𝜇𝑖𝑖∗ 𝑡𝑡 = 0
𝐶𝐶 𝑥𝑥𝑖𝑖∗ 𝑡𝑡 ,𝑢𝑢𝑖𝑖∗ 𝑡𝑡 = 0

Hamiltonian: 𝐻𝐻 𝑥𝑥∗,𝑢𝑢∗, 𝜆𝜆∗, 𝜇𝜇∗ = 𝐿𝐿 𝑥𝑥∗,𝑢𝑢∗ + 𝜆𝜆∗𝑇𝑇𝑓𝑓 𝑥𝑥∗,𝑢𝑢∗ + 𝜇𝜇∗𝑇𝑇𝐶𝐶 𝑥𝑥∗,𝑢𝑢∗

State and costate are functions of 𝑈𝑈(𝑡𝑡) and 𝑥𝑥0∗ 𝑡𝑡 = 𝑥𝑥(𝑡𝑡)



Nonlinear Equation for the Input Sequence
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𝐹𝐹 𝑈𝑈(𝑡𝑡), 𝑥𝑥(𝑡𝑡), 𝑡𝑡

=

𝛻𝛻𝑢𝑢𝐻𝐻 𝑥𝑥0∗ 𝑡𝑡 ,𝑢𝑢0∗ 𝑡𝑡 , 𝜆𝜆1∗ 𝑡𝑡 ,𝜇𝜇0∗ 𝑡𝑡
𝐶𝐶 𝑥𝑥0∗ 𝑡𝑡 ,𝑢𝑢0∗ 𝑡𝑡

⋮
𝛻𝛻𝑢𝑢𝐻𝐻 𝑥𝑥𝑁𝑁−1∗ 𝑡𝑡 ,𝑢𝑢𝑁𝑁−1∗ 𝑡𝑡 , 𝜆𝜆𝑁𝑁∗ 𝑡𝑡 ,𝜇𝜇𝑁𝑁−1∗ 𝑡𝑡

𝐶𝐶 𝑥𝑥𝑁𝑁−1∗ 𝑡𝑡 ,𝑢𝑢𝑁𝑁−1∗ 𝑡𝑡

= 0

State and costate are functions of 𝑈𝑈(𝑡𝑡) and 𝑥𝑥0∗ 𝑡𝑡 = 𝑥𝑥(𝑡𝑡)

Future Input Sequence Current State



Continuation Method
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Condition for Stabilizing 𝐹𝐹 𝑈𝑈(𝑡𝑡), 𝑥𝑥(𝑡𝑡), 𝑡𝑡 = 0
𝑑𝑑
𝑑𝑑𝑑𝑑
𝐹𝐹 𝑈𝑈(𝑡𝑡), 𝑥𝑥(𝑡𝑡), 𝑡𝑡 = −𝜁𝜁𝐹𝐹(𝑈𝑈 𝑡𝑡 , 𝑥𝑥 𝑡𝑡 , 𝑡𝑡) (𝜁𝜁 > 0)

Linear Equation for �̇�𝑈(𝑡𝑡): 
𝜕𝜕𝐹𝐹
𝜕𝜕𝑈𝑈
�̇�𝑈 = −𝜁𝜁𝐹𝐹 − 𝜕𝜕𝐹𝐹

𝜕𝜕𝑥𝑥
�̇�𝑥 − 𝜕𝜕𝐹𝐹

𝜕𝜕𝑑𝑑

Update of Optimal Solution 𝑈𝑈(𝑡𝑡): 
𝑈𝑈 𝑡𝑡 + ∆𝑡𝑡 = 𝑈𝑈 𝑡𝑡 + �̇�𝑈 𝑡𝑡 ∆𝑡𝑡 No Iterative Search



Continuatin/GMRES Method

• Only one linear equation at each time
• Efficient linear equation solver GMRES
• Horizon length: 𝑇𝑇 0 = 0,𝑇𝑇(𝑡𝑡) → 𝑇𝑇𝑓𝑓 (easy to find 𝑈𝑈 0 )

11
(O ’04)

1) At each time 𝑡𝑡, measure the state 𝑥𝑥(𝑡𝑡)
2) Solve a linear equation for �̇�𝑈(𝑡𝑡): 

𝜕𝜕𝐹𝐹
𝜕𝜕𝑈𝑈
�̇�𝑈 = −𝜁𝜁𝐹𝐹 − 𝜕𝜕𝐹𝐹

𝜕𝜕𝑥𝑥
�̇�𝑥 − 𝜕𝜕𝐹𝐹

𝜕𝜕𝑑𝑑
3) Update 𝑈𝑈 𝑡𝑡 by 𝑈𝑈 𝑡𝑡 + ∆𝑡𝑡 = 𝑈𝑈 𝑡𝑡 + �̇�𝑈 𝑡𝑡 ∆𝑡𝑡
4) Go to Step 1)

Jacobian-Free
𝜕𝜕𝐹𝐹
𝜕𝜕𝑈𝑈

unnecessary



Two-Link Arm
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• Free Elbow Joint and  
Constrained Shoulder Torque

• Computational Time per Update: 
0.5ms (CPU: Core 2 Duo 1.2GHz)

(O ’12)



Underactuated Hovercraft
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• Fixed On-Off Thrusters, 
No Lateral Thrust

• Sampling Period 1/120 s 
(CPU: Athlon 900 MHz) 

(Seguchi&O ’03)



Automatic Ship Maneuvering

14

© Kawasaki Heavy Industry 2004

• Redundant Actuators
• NMPC for Route Tracking 

and Thrust Assignment
(Hamamatsu et al. ’08)



Hexacopter with Failed Rotors
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• Nonlinear Model with Quaternions
• Constraints on Thrusts
• Same NMPC for All Failure Patterns 

with Different Weights
• Computational Time per Update: 

below 0.2ms
(Aoki et al. ’21)



Climbing Humanoid Robot

16
(Omoto et al. ’19)

• Integrated optimization of path and motions
• Penalty on deviation from reference velocity
• Constraints on force/moment balance
• Constraints on holding forces
• 12 states, 36 inputs (including dummy inputs), 

and 15 constraints
• Computation time per update < 20 ms

(Core i5, 1.8GHz) Maximum 
Holding Force 
on the Wall



Other Applications
• Tethered Satellite, Robots, Automobiles, 

Formation Flight of Helicopters, FOWT, etc. 
• Flight Experiment of On-Line Path 

Generation for an Aircraft
• Temperature Control for Superconducting 

Magnets in the Large Hadron Collider (LHC)
• Distributed Parameter Systems 

(Thermofluid Systems)

17T. Ohtsuka, et al.: Practical Applications of Control by Real-Time Optimization, Corona Publishing (2015) (in Japanese)

© JAXA

Maximilien Brice (CERN) 
(https://commons.wikimedia.org/wiki/File:Views_of_
the_LHC_tunnel_sector_3-4,_tirage_2.jpg), „Views 
of the LHC tunnel sector 3-4, tirage 2“, 
https://creativecommons.org/licenses/by-
sa/3.0/legalcode



Other Problems
• Nonlinear Receding Horizon Differential Game

– Minimizer (Control) and Maximizer (Disturbance) (Hirota et al. ‘17)
– Nash equilibrium of Multiple Players (Azuma&O ‘11)

• Moving Horizon Estimation (Soneda&O ‘05)

– Optimal Fitting of a Model and Measurements over a Finite Past

18



Outline of Part 3

• Real-Time Optimization (RTO) Algorithm for Nonlinear MPC (NMPC)
• Automatic Code Generation Tool

19



Software Tools for NMPC
• MPT (Kvasnica et al. ’04), MPT3 (Herceg et al. ‘13)

• AutoGen (O&Kodama ’02)

• AutoGenU for Mathematica (O ‘04), Maple (O ‘15), 
Python Jupyter Notebook (Katayama&O ‘20)

• ACADO (Houska et al. ‘11), acados (Verschueren et al., ‘21)

• CVXGEN (Mattingley&Boyd ‘12), qpOASES (Ferreau et al. ’14)

• FORCES PRO
• GRAMPC (Englert et al. ‘19)

• ParNMPC (Deng&O ‘20)

20



AutoGenU for Maple

• Developed by Cybernet Systems in collaboration with the speaker
• Symbolic computation by Maple
• C code generation
• Integrated compilation, execution, and graph plotting
• Freely available at Maplesoft Application Center website

21



Automatic Code Generation

22

C Code for Common 
Functions

Problem Dependent
C Code

C Code for Main 
Loop

State Equation &
Performance Index

Symbolic Comp. &
Code Generation

Graph Drawing

+

+

Simulation Program Code Generation System
AutoGenU.mw

User 
Input

Sim. 
Data

C code for simulation is generated from the state equation and 
performance index specified in Maple. 



Example: Semi-Active Damper
�̇�𝑥1
�̇�𝑥2

=
𝑥𝑥2

𝑎𝑎𝑥𝑥1 + 𝑏𝑏𝑥𝑥2𝑢𝑢

0 ≤ 𝑢𝑢 ≤ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

⇕

𝑢𝑢1 −
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

2

2
+ 𝑢𝑢22 −

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
2

4
= 0

𝐽𝐽 = 1
2
𝑥𝑥𝑇𝑇 𝑡𝑡 + 𝑇𝑇 𝑆𝑆𝑓𝑓𝑥𝑥 𝑡𝑡 + 𝑇𝑇

+�
𝑑𝑑

𝑑𝑑+𝑇𝑇 1
2
𝑥𝑥𝑇𝑇 𝜏𝜏 𝑄𝑄𝑥𝑥 𝜏𝜏 +

𝑟𝑟1
2
𝑢𝑢12 𝜏𝜏 − 𝑟𝑟2𝑢𝑢2 𝑑𝑑𝜏𝜏

23

u

m

y

k

𝑥𝑥1 = 𝑦𝑦, 𝑥𝑥2 = �̇�𝑦,
𝑢𝑢1 = 𝑢𝑢,𝑢𝑢2: Dummy Input

Bilinear



Maple Worksheet AutoGenU.mw

24

▶ Initialize

▶ Define Setting Parameters



State Equation and Constraint
Input

25

Result

Input Box



Performance Index
Input

26

Result



User’s Variables and Arrays
Input

27

Variables

Arrays



Simulation Conditions
Input

28

Final Time of Simulation

Time Step for Simulation

Horizon Length

Initial State

No. of Iterations in GMRES

No. of Time Steps in Horizon, N



Maple Worksheet AutoGenU.mw

29

▶ Generate Euler-Lagrange Equations

▶ Generate C Code



Symbolic Computation for ELE

30

Partial 
Derivatives

Hamiltonian



Maple Worksheet AutoGenU.mw
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▶ Run Simulation

▶ Show Graphs



Simulation Result

32

Doubled 
Frequency



MPC Design & Connector
• Automatic Generation of a Simulink Block
• Contact Cybernet Systems for license.

Email: infomaple@cybernet.co.jp

33



Summary
• Nonlinear model predictive control (NMPC) is a very general 

framework for feedback control of nonlinear systems.
• Real-time optimization (RTO) is a key component of NMPC. 
• C/GMRES is a continuation-based real-time algorithm for NMPC with 

successful applications. 
• AutoGenU for Maple is a Maple worksheet for automatic C code 

generation of C/GMRES.
• RTO algorithms can be applied not only to MPC but also to various 

problems such as estimation, differential games, etc. 

34



URLs
• Maplesoft Application Center: 

http://www.maplesoft.com/applications/view.aspx?SID=153555
• Maplesoft Webinar: 

https://www.youtube.com/watch?v=fVsYNjQfYUg
• MPC Design & Connector License: infomaple@cybernet.co.jp
• Mathematica Version: http://www.ids.sys.i.kyoto-

u.ac.jp/~ohtsuka/code/autogenu/autogenu.zip
• Python Jupyter Notebook: https://github.com/mayataka/CGMRES
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Outline of Part 4

• NMPC with State-Dependent Switches and State Jumps
• Parallel Algorithm for NMPC

S. Katayama, M. Doi, T. Ohtsuka: A Moving Switching Sequence Approach for Nonlinear Model Predictive Control of Switched 
Systems with State-Dependent Switches and State Jumps; Int. J. Robust & Nonlinear Contr., 30(2), 719-740 (2020)
H. Deng, T. Ohtsuka: A Parallel Newton-type Method for Nonlinear Model Predictive Control; Automatica, 109, paper 108560 (2019) 



State-Dependents Switches of Dynamics

• Systems with state-dependent switches (SDS)

System with SDS

Control input

Controller

Different dynamics

Cf. Systems with state-independent 
switches (SIS)

System with SIS

Control input

Controller

Switching signal



NMPC for Systems with SDS

𝑡𝑡 𝑡𝑡 + 𝑇𝑇

𝑥𝑥

𝑡𝑡 𝑡𝑡 + 𝑇𝑇

𝑢𝑢

predicted state trajectory
actual state trajectory

optimal control input
actual control input

�̇�𝑥 = 𝑓𝑓𝑞𝑞1 𝑥𝑥,𝑢𝑢

𝑡𝑡1

current state  𝑥𝑥 𝑡𝑡

control input 𝑢𝑢 𝑡𝑡

NMPC
Controller

System with SDS
�̇�𝑥 𝑡𝑡 = 𝑓𝑓𝑞𝑞 𝑡𝑡 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡

�̇�𝑥 = 𝑓𝑓𝑞𝑞2 𝑥𝑥,𝑢𝑢

𝑞𝑞 𝑡𝑡 : index of active dynamics

How to solve the
OCP with a short 

computational time?

Different dynamics

a state jump

Actual input 𝑢𝑢 𝑡𝑡 = the initial 
value of the solution



OCP Formulation
• Switching sequence 𝜎𝜎 = 𝑞𝑞1, … , 𝑞𝑞𝑚𝑚

�̇�𝑥 = 𝑓𝑓𝑞𝑞𝑘𝑘 𝑥𝑥,𝑢𝑢

�̇�𝑥 = 𝑓𝑓𝑞𝑞𝑘𝑘+1 𝑥𝑥,𝑢𝑢

switching condition
𝜓𝜓𝑞𝑞𝑘𝑘,𝑞𝑞𝑘𝑘+1 𝑥𝑥 = 0

state jump

Horizon

𝑥𝑥 𝑡𝑡𝑘𝑘+ = 𝛾𝛾𝑞𝑞𝑘𝑘,𝑞𝑞𝑘𝑘+1 𝑥𝑥 𝑡𝑡𝑘𝑘−



OCP Formulation (for a given switching sequence)
Find the control input 𝑢𝑢 𝑡𝑡′ 𝑡𝑡 ≤ 𝑡𝑡′ ≤ 𝑡𝑡 + 𝑇𝑇
minimizing
𝐽𝐽 = 𝜑𝜑𝑞𝑞𝑚𝑚 𝑥𝑥 𝑡𝑡 + 𝑇𝑇 + �

𝑡𝑡𝑚𝑚−1

𝑡𝑡+𝑇𝑇
𝐿𝐿𝑞𝑞𝑚𝑚 𝑥𝑥 𝑡𝑡′ ,𝑢𝑢 𝑡𝑡′ 𝑑𝑑𝑡𝑡′ + �

𝑘𝑘

𝑚𝑚

�
𝑡𝑡𝑘𝑘−1

𝑡𝑡𝑘𝑘
𝐿𝐿𝑞𝑞𝑘𝑘 𝑥𝑥 𝑡𝑡′ ,𝑢𝑢 𝑡𝑡′ 𝑑𝑑𝑡𝑡′ + �

𝑡𝑡

𝑡𝑡1
𝐿𝐿𝑞𝑞1 𝑥𝑥 𝑡𝑡′ ,𝑢𝑢 𝑡𝑡′ 𝑑𝑑𝑡𝑡′

subject to
𝑑𝑑
𝑑𝑑𝑡𝑡′ 𝑥𝑥 𝑡𝑡′ = 𝑓𝑓𝑞𝑞1 𝑥𝑥 𝑡𝑡′ ,𝑢𝑢 𝑡𝑡′ 𝑡𝑡 ≤ 𝑡𝑡′ < 𝑡𝑡1

𝜓𝜓𝑞𝑞1,𝑞𝑞2 𝑥𝑥 𝑡𝑡1− = 0,  𝑥𝑥 𝑡𝑡1+ = 𝛾𝛾𝑞𝑞1,𝑞𝑞2 𝑥𝑥 𝑡𝑡1−

�
𝑑𝑑
𝑑𝑑𝑡𝑡′ 𝑥𝑥 𝑡𝑡′ = 𝑓𝑓𝑞𝑞𝑘𝑘 𝑥𝑥 𝑡𝑡′ ,𝑢𝑢 𝑡𝑡′ 𝑡𝑡𝑘𝑘−1 < 𝑡𝑡′ ≤ 𝑡𝑡𝑘𝑘

𝜓𝜓𝑞𝑞𝑘𝑘,𝑞𝑞𝑘𝑘+1 𝑥𝑥 𝑡𝑡𝑘𝑘− = 0, 𝑥𝑥 𝑡𝑡𝑘𝑘+ = 𝛾𝛾𝑞𝑞𝑘𝑘,𝑞𝑞𝑘𝑘+1 𝑥𝑥 𝑡𝑡𝑘𝑘−

𝑑𝑑
𝑑𝑑𝑡𝑡′ 𝑥𝑥 𝑡𝑡′ = 𝑓𝑓𝑞𝑞𝑚𝑚 𝑥𝑥 𝑡𝑡′ ,𝑢𝑢 𝑡𝑡′ 𝑡𝑡𝑚𝑚−1 < 𝑡𝑡′ ≤ 𝑡𝑡 + 𝑇𝑇



OCP Formulation (for a given switching sequence)
Find the variables to be determined

𝑈𝑈 𝑡𝑡 =

𝑢𝑢0∗ 𝑡𝑡
⋮

𝑢𝑢𝑁𝑁−1∗ 𝑡𝑡
𝑈𝑈𝑞𝑞1,𝑞𝑞2 𝑡𝑡

⋮
𝑈𝑈𝑞𝑞𝑚𝑚−1,𝑞𝑞𝑚𝑚 𝑡𝑡

satisfying

𝐹𝐹 𝑈𝑈 𝑡𝑡 , 𝑥𝑥 𝑡𝑡 , 𝑡𝑡 ≔

𝛻𝛻𝑢𝑢𝐻𝐻𝑞𝑞1 𝑥𝑥0∗ 𝑡𝑡 ,𝑢𝑢0∗ 𝑡𝑡 , 𝜆𝜆1∗ 𝑡𝑡
⋮

𝛻𝛻𝑢𝑢𝐻𝐻𝑞𝑞𝑚𝑚 𝑥𝑥𝑁𝑁−1∗ 𝑡𝑡 ,𝑢𝑢𝑁𝑁−1∗ 𝑡𝑡 , 𝜆𝜆𝑁𝑁∗ 𝑡𝑡
𝐹𝐹𝑞𝑞1,𝑞𝑞2 𝑈𝑈 𝑡𝑡 , 𝑥𝑥 𝑡𝑡 , 𝑡𝑡

⋮
𝐹𝐹𝑞𝑞𝑚𝑚−1,𝑞𝑞𝑚𝑚 𝑈𝑈 𝑡𝑡 , 𝑥𝑥 𝑡𝑡 , 𝑡𝑡

= 0,

𝜆𝜆 ∈ ℝ𝑛𝑛 : Lagrange multiplier for �̇�𝑥 = 𝑓𝑓𝑞𝑞 𝑥𝑥,𝑢𝑢 ,   𝐻𝐻𝑞𝑞 𝑥𝑥,𝑢𝑢, 𝜆𝜆 = 𝐿𝐿𝑞𝑞 𝑥𝑥,𝑢𝑢 + 𝜆𝜆T𝑓𝑓𝑞𝑞 𝑥𝑥,𝑢𝑢 : Hamiltonian

𝑈𝑈𝑞𝑞𝑘𝑘,𝑞𝑞𝑘𝑘+1 𝑡𝑡 =
𝑢𝑢∗ 𝑡𝑡𝑘𝑘+

𝜈𝜈𝑞𝑞𝑘𝑘,𝑞𝑞𝑘𝑘+1
∗ 𝑡𝑡
𝑡𝑡𝑘𝑘

variables with respect to switch from 𝑞𝑞𝑘𝑘 to 𝑞𝑞𝑘𝑘+1

Discretized control input
sequence on the horizon

Interior boundary conditions 
associated with switches 

State 𝑥𝑥𝑖𝑖∗ 𝑡𝑡 and costate 𝜆𝜆𝑖𝑖∗ 𝑡𝑡 are functions of 
𝑈𝑈(𝑡𝑡) and 𝑥𝑥0∗ 0 = 𝑥𝑥(𝑡𝑡) through ELE



C/GMRES Method
Nonlinear equation for 𝑈𝑈 𝑡𝑡

Find 𝑈𝑈 𝑡𝑡 satisfying 𝐹𝐹 𝑈𝑈 𝑡𝑡 , 𝑥𝑥 𝑡𝑡 , 𝑡𝑡 = 0

Linear equation for �̇�𝑈 𝑡𝑡

Find �̇�𝑈 𝑡𝑡 satisfying  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�̇�𝑈 = −𝜁𝜁𝐹𝐹 − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�̇�𝑥 − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑡𝑡

Update 𝑈𝑈 𝑡𝑡 on the basis of �̇�𝑈 𝑡𝑡 , e.g., by

𝑈𝑈 𝑡𝑡 + Δ𝑡𝑡 = 𝑈𝑈 𝑡𝑡 + �̇�𝑈 𝑡𝑡 Δ𝑡𝑡

Continuation method 𝑑𝑑
𝑑𝑑𝑡𝑡
𝐹𝐹 = −𝜁𝜁𝐹𝐹 (𝜁𝜁 > 0)

The GMRES method
(a fast Jacobian-free linear solver)

Only one linear equation 
per update

How to determine switching sequence?



Moving Switching Sequence Approach

𝑡𝑡 + 𝑇𝑇

𝑞𝑞1 𝑞𝑞2 𝑞𝑞3 𝑞𝑞𝑚𝑚−1

⋯

𝑞𝑞𝑚𝑚

𝑥𝑥∗

𝑡𝑡

𝑞𝑞1

≈
ç

≈
ç

A switch from 𝑞𝑞1 to 𝑞𝑞2 occurs 
on the actual system 

𝑡𝑡 + 𝑇𝑇𝑡𝑡 𝑡𝑡 + 𝑇𝑇𝑡𝑡 𝑡𝑡 + 𝑇𝑇𝑡𝑡

𝑞𝑞𝑚𝑚+1𝑞𝑞𝑚𝑚𝑞𝑞𝑚𝑚

Detect an additional switch from 
𝑞𝑞𝑚𝑚 to 𝑞𝑞𝑚𝑚+1

Remove 𝑈𝑈𝑞𝑞1,𝑞𝑞2 𝑡𝑡 from 𝑈𝑈 𝑡𝑡 Modify the solution 𝑈𝑈 𝑡𝑡 taking 
the additional switch into account

𝑥𝑥∗ 𝑥𝑥∗𝑥𝑥∗

Switching sequence 
changes continuously

Assumption 1 Switching sequence 𝜎𝜎 does not change except for the first and last elements

An assumption to justify this approach



Reinitialization at Additional Switch

• Assumption 2 Difference between the partial derivative of the terminal cost with respect to 𝑥𝑥 before 
and after reinitialization is sufficiently small

• After reinitializing 𝑈𝑈 𝑡𝑡 , we restart the continuation method for the OCP over the entire horizon

𝜓𝜓𝑞𝑞𝑚𝑚,𝑞𝑞𝑚𝑚+1 𝑥𝑥 = 0

�̇�𝑥 = 𝑓𝑓𝑞𝑞𝑚𝑚 𝑥𝑥,𝑢𝑢

�̇�𝑥 = 𝑓𝑓𝑞𝑞𝑚𝑚+1 𝑥𝑥,𝑢𝑢

Solve the reduced OCP 
over a short interval

𝑥𝑥∗

𝑡𝑡

〜〜 Reinitialize solution 
𝑈𝑈 𝑡𝑡 with a short 
computational time 

𝜓𝜓𝑞𝑞𝑚𝑚,𝑞𝑞𝑚𝑚+1 𝑥𝑥 = 0

�̇�𝑥 = 𝑓𝑓𝑞𝑞𝑚𝑚 𝑥𝑥,𝑢𝑢

𝑥𝑥∗

𝑡𝑡
〜〜

𝑡𝑡𝑚𝑚 𝑡𝑡𝑚𝑚

An assumption for 
the reduced OCP

Detection of additional switch



Summary of the Algorithm
At each time t
1. Compute the state trajectory on the horizon based on current 𝑈𝑈 𝑡𝑡 and 𝜎𝜎
2. If an additional switch is detected then

3. Solve the reduced OCP to reinitialize 𝑈𝑈 𝑡𝑡
4. End if

5. Update 𝑈𝑈 𝑡𝑡 + Δ𝑡𝑡 by the continuation method for the OCP over the entire horizon
6. If 𝑡𝑡1 𝑡𝑡 + Δ𝑡𝑡 < 𝑡𝑡 + Δ𝑡𝑡 then
7. Remove 𝑈𝑈𝑞𝑞1,𝑞𝑞2 𝑡𝑡 + Δ𝑡𝑡 from 𝑈𝑈 𝑡𝑡 + Δ𝑡𝑡 and 𝑞𝑞1 from 𝜎𝜎
8. End if



𝜓𝜓1,2 𝑥𝑥

𝜓𝜓2,1 𝑥𝑥

Numerical Simulation

• Compass-like walking robot

• Performance index
𝐿𝐿𝑖𝑖 𝑥𝑥,𝑢𝑢 =

1
2𝑎𝑎1

�̇�𝜃𝑖𝑖 − 𝑣𝑣ref
2 +

1
2𝑎𝑎2 𝜃𝜃1 + 𝜃𝜃2 2 +

1
2 𝑟𝑟𝑢𝑢

2, 𝑖𝑖 = 1,2
𝜑𝜑𝑖𝑖 𝑥𝑥 = 0, 𝑖𝑖 = 1,2

where 𝑎𝑎1,𝑎𝑎2, 𝑟𝑟, 𝑣𝑣ref ∈ ℝ



Numerical Simulation

• Impulsive disturbances 
at 5 s and 7 s

• 0.14 ms per update



Numerical Simulation

Impulsive disturbances 
at 5 s and 7 s



Numerical Simulation

Impulsive disturbances 
at 5 s and 7 s

Switching time is 
reoptimized.



More Complex System

Trotting by NMPC
(1.2ms per update of input)

Jump by OCP
(0.3 s in total for optimization)

S. Katayama: https://github.com/mayataka/robotoc 



Summary

• RTO algorithm for NMPC of nonlinear systems with state-dependent 
switches and state jumps
Based on an assumption that the switching sequence is invariant 

except for the both ends of the horizon
Solve a reduced OCP to reinitialize the solution when an additional 

switch is detected at the end of the horizon
• Succeeded in controlling a compass-like walking robot even when 

there are disturbances
• Ongoing work: Modifications, extensions, and software tools



Outline of Part 4

• NMPC with State-Dependent Switches and State Jumps
• Parallel Algorithm for NMPC

S. Katayama, M. Doi, T. Ohtsuka: A Moving Switching Sequence Approach for Nonlinear Model Predictive Control of Switched 
Systems with State-Dependent Switches and State Jumps; Int. J. Robust & Nonlinear Contr., 30(2), 719-740 (2020)
H. Deng, T. Ohtsuka: A Parallel Newton-type Method for Nonlinear Model Predictive Control; Automatica, 109, paper 108560 (2019) 



Parallel computing is a trend, however…

Motivation



Motivation
Existing toolkits (algorithms) for NMPC:
• AutoGenU 
• ACADO/acados        
• VIATOC
• GRAMPC              
• FORCES Pro 
• ……

(C/GMRES)
(RTI/SQP)
(Gradient proj.)
(Aug. Lagrangian & Gradient proj.)
(Interior-point)

Low degrees of parallelism

Speedup: 
(Amdahl's law)

Parallelized on     cores

Non-parallelizable part

Non-parallelizable part

Parallelizable part



Motivation

Goal: Highly parallelizable algorithm & efficient toolkit

Key idea: Dividing the NMPC problem into subproblems 
along the prediction horizon



NMPC Problem 

• To an equality constraint and an additional cost (interior-point method)

Inequality constraint elimination:

• To an equality constraint by introducing a dummy variable

Equality-constraint NMPC problem:



Couplings in NMPC Problem

It can solved in parallel for each time stamp

• Consider the optimization problem without the differential constraint:

• Parallelization is difficult because of the couplings introduced by the 
differential equation:



Discretization for NMPC Problem
Generally, the discretized NMPC problem is solved:

Which disc. method should we use?

Different discretization methods lead to different problem structures/couplings:
• Forward Euler method
• Backward Euler method
• Runge-Kutta method
• ...... 

Discretization method with a minimum coupling?

Variables:Variables:



Discretization with Reduced Couplings 

where:

Discretized problem (N-stage optimal control problem)

e.g., backward Euler method:

Reverse-time discretization method:

The couplings are 
“reduced” by using the 
reverse-time 
discretization method



KKT Conditions with Linear Couplings
• Karush-Kuhn-Tucker (KKT) conditions (necessary conditions for optimality):

where:    (costate) and     : Lagrange multipliers

• Compact form of the KKT conditions:

Linear 
couplings

or

with initial and terminal conditions:



Parallel Method: Motivation
Assume that the optimal coupling variables are known in advance:

Then, the KKT conditions can be solved in parallel:

However, it is impossible to know 
the coupling variables (         and         ) 
in advance! 
Can we estimate them?

Single-stage problem



Linearity in Costate

Linear coupling of     

Consider the estimation of      :

• Solving           using Newton’s method (k-th iteration):

Independent of

• Extracting               from                  :  

(estimation of     )



Backward Correction Method

Further splitting

Recursion

Estimation of the costate variables:

Backward correction method
• Estimating         (backward)
• Solving           (forward)

Backward correction method
= Newton’s method 

Then, we can solve      in a forward manner 



Backward Correction Method

KKT & Jacobian evaluations

Iteration (forward)

Costate    estimation (backward)

Most computationally 
expensive part & in serial

How can we parallelize this algorithm?

Backward correction method (structure-exploiting Newton’s method):



Approximation for Parallelization

• A coarse estimation of          based on the previous iteration’s information: 

• Estimation of           in the backward correction method:

• Accurate estimation
• Time-consuming (recursion)

• Approximate estimation
• Fast (in parallel)



Parallel Newton-type Method

• KKT & Jacobian evaluations
• Matrix factorization

• In parallel
• Degree of parallelism N

• In serial
• 2N matrix-vector 

multiplications

Parallel algorithm:



ParNMPC Toolkit
ParNMPC (Parallel NMPC)
• Open source 
• Symbolic problem formulation
• Primal-dual interior-point method
• Automatic parallel code generation

− C/C++
− lib, dll, mex, exe

Options (version 1903)
• Hessian approximation
• High-order discretization
• Degree of parallelism configuration
• NLP techniques 

− Regularization 
− Line search 
− Barrier strategy 
− Warm start strategy 
− ……

• Fast 
• Numerically robust
• Easy-to-use

H. Deng, T. Ohtsuka: ParNMPC - A Parallel Optimization Toolkit for Real-Time Nonlinear Model Predictive Control; Int. J. Contr. (2020)
https://github.com/deng-haoyang/ParNMPC



Numerical Experiment: Quadrotor

Quadrotor position control
• 9 states, 4 inputs
• T = 0.5 s, N = 24
• Quadratic cost function:

• Input constraints: 

• Intel Core i9-8950HK @2.9 GHz, 6 cores



Numerical Experiment: Quadrotor
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Numerical Experiment: Quadrotor
Comparison with state-of-the-art solvers

0 0.5 1 1.5 2 2.5 3
Time [s]

10 2

10 3

ParNMPC (DOP = 1)
ParNMPC (DOP = 6)
ACADO + qpOASES
ACADO + qpDUNES
GRAMPC (suboptimal)
VIATOC (suboptimal)
FalcOpt (suboptimal)

4x speedup (6 cores)

ParNMPC (1 core)
ParNMPC (6 cores)
ACADO + qpOASES
ACADO + qpDUNES
GRAMPC (suboptimal)
VIATOC (suboptimal)
FalcOpt (suboptimal)



Numerical Experiment: Robot Manipulator
Path tracking control of a 7 DOF robot manipulator:

Results (T = 1 s, N = 18)
• 240 us/iteration
• 5.6x speedup (6 cores)

1 kHz real-time NMPC
Constraints:
• Input torque 
• Angular velocity



Other Applications

Semi-active damper Double inverted pendulum Quadrotor Chain of masses

Helicopter Inverted pendulum on a cart 7 DOF robot manipulator

…

Successful applications of ParNMPC:



Summary

• Parallel Newton-type method
Highly parallelizable
 Fast rate of convergence
 Applicable to general NMPC problems

• ParNMPC (code generation tool)
 Easy-to-use
 Automatic parallel code generation 
 Large number of applications

• Future directions
 Reliable parallel computing 
 FPGA/GPU implementation



Conclusions
• Control systems are everywhere and provide motivations and 

opportunities for artificial intelligence. 
• Model predictive control (MPC) by real-time optimization is very 

powerful as long as mathematical models are available.
• Most control systems have some mathematical models, but it is often 

difficult to find appropriate models for control. It is also often 
difficult to define appropriate performance indices. 

• Machine learning would be particularly useful for fine tuning of 
mathematical models and/or performance indices.

• Application of artificial intelligence would be expected to the entire 
process of analysis and design of control systems.
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