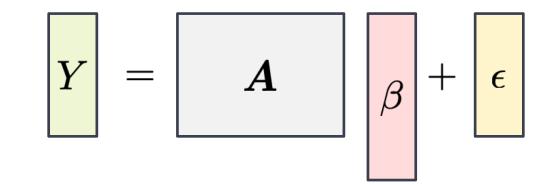
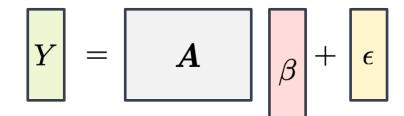
On Robustness of Principal Component Regression

Anish Agarwal

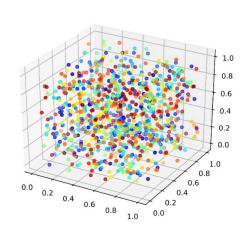
Devavrat Shah, Dennis Shen, Dogyoon Song

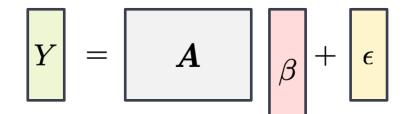
MIT



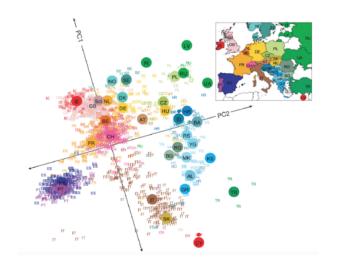


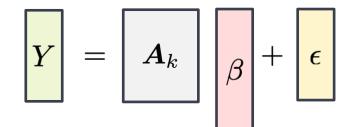
Step 1: PCA





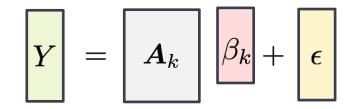
Step 1: PCA (*k*-components)



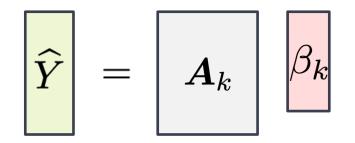


Step 2: Regression

$$\begin{array}{c|c} \beta_k = \text{minimize} \\ \theta \end{array} & \begin{array}{c} Y \\ \theta \end{array} & \begin{array}{c} A_k \end{array} \end{array} \begin{pmatrix} \theta \\ \\ \\ \\ \\ \\ \\ \end{array} \right)^2$$



Step 3: Prediction



"IF DATA IS (APPROXIMATELY) LOW-DIMENSIONAL, USE PCR!"

-- Anonymous Data Scientists

When exactly should we be using PCR?

Theoretical properties of PCR?

Is dimension-reduction only benefit to PCR?

Our Theoretical Analysis of PCR helps answer following questions..

How low-rank do covariates need to be?

How many principal components to pick?

How well does PCR perform on a test data (i.e. generalization properties)?

Is Dimension-Reduction Only Benefit?

NO!

2 PCR (as is) works for a wide variety of settings!

Noisy Missing Mixed valued

Sensitive

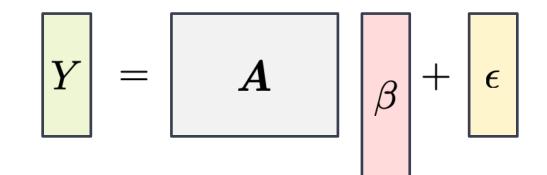
We show PCR is surprisingly robust to problems that plague large-scale modern datasets

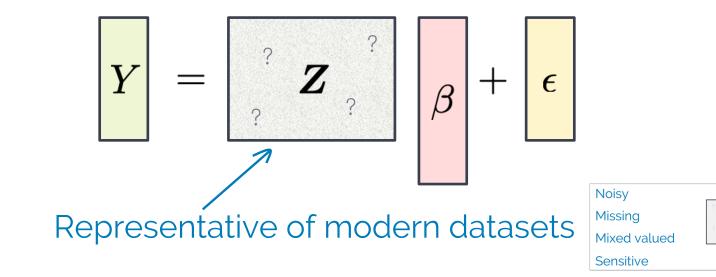
Main Contribution of this Work

Error-In Variable Regression

(Setting We Consider)

2 Classical (high-dimensional) Regression





(2) EIV - Surprising Number of Applications

Time Series Analysis (measurement noise)

Causal Inference (Synthetic Control) (measurement noise)

Differentially-private Regression (noise by design)

Mixed Valued Regression (structural noise)

(2) EIV - Surprising Number of Applications

Time Series Analysis (measurement noise)

Causal Inference (Synthetic Control) (measurement noise)

Differentially-private Regression (noise by design)

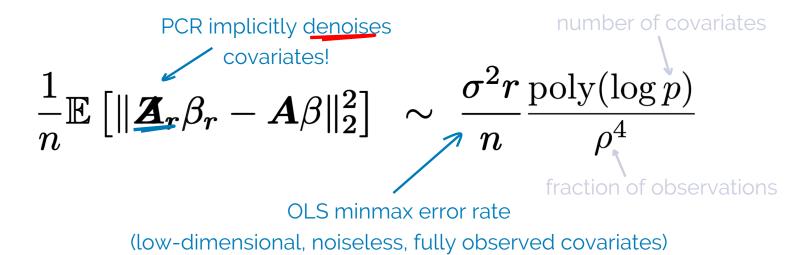
Mixed Valued Regression (structural noise)

Formal Results

Theorem (Informal): Training Error

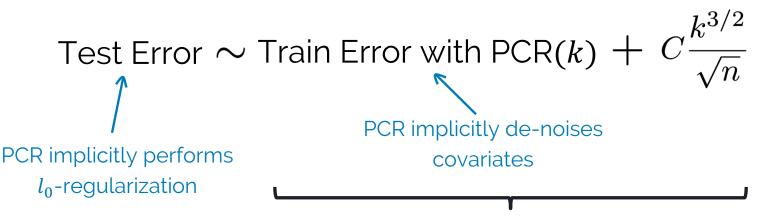
If principal components chosen correctly (k = r)

2



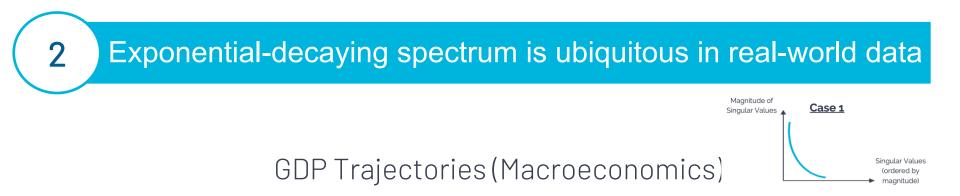
2 Theorem (Informal): Testing Error

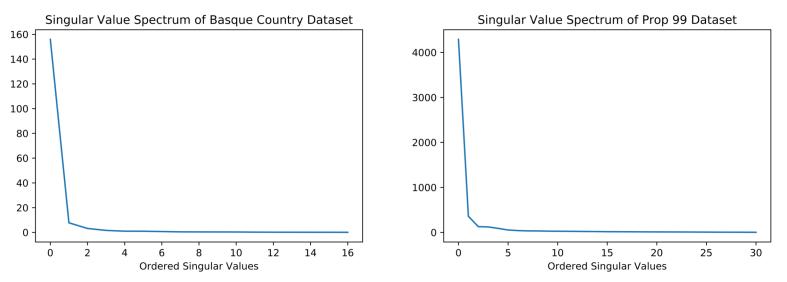
If principal components **not** chosen correctly $(k \neq r)$

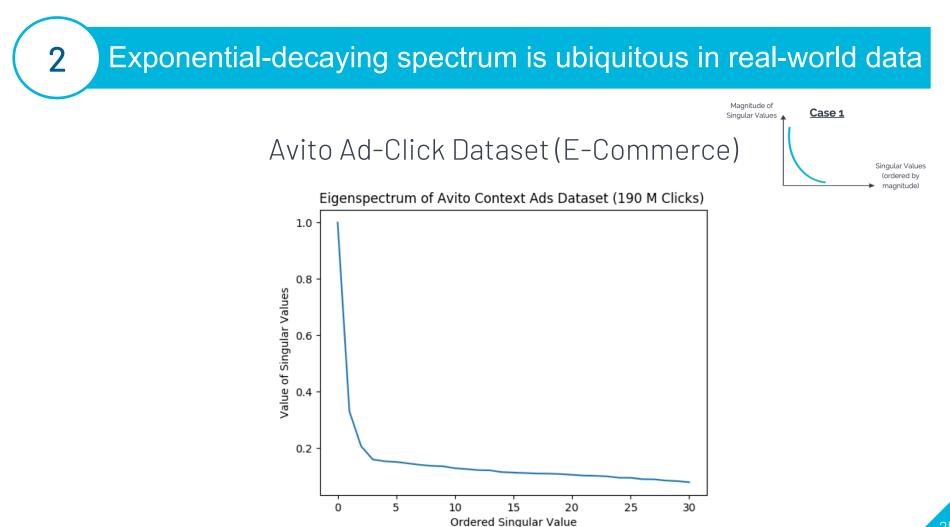


Choose k that minimizes above

2 When To and Not to Use PCR? – Look at Spectrum Don't Use PCR! Use PCR! Magnitude of Case 3 Case 1 Singular Values Singular Values (ordered by magnitude) Case 4 Case 2

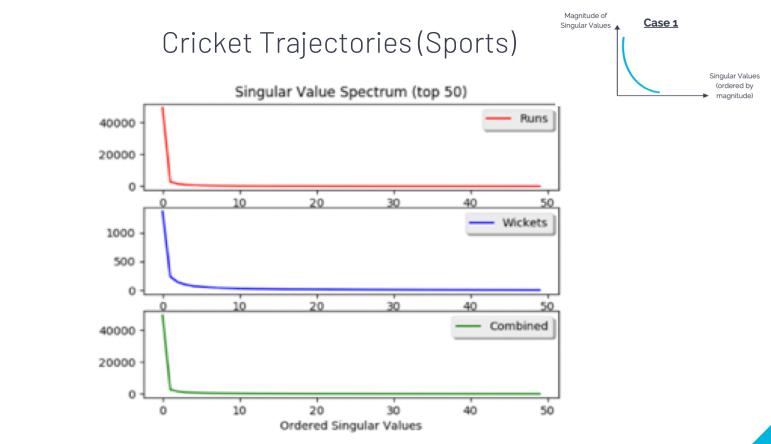






Exponential-decaying spectrum is ubiquitous in real-world data

2



3 Applications of Error-In-Variable Regression

Time Series Analysis (measurement noise)

Causal Inference (Synthetic Control) (measurement noise)

Differentially-private Regression (noise by design)

Mixed Valued Regression (structural noise)

Data privacy is top-of-mind as we increasingly apply ML on sensitive user data (genetic data, purchase history etc.)

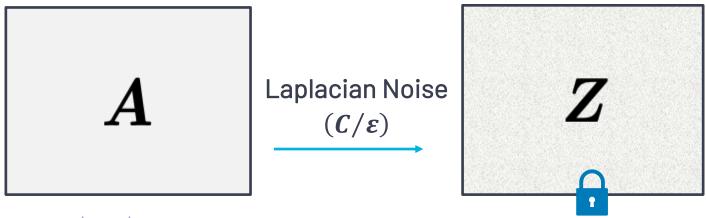
Standard Notion of Privacy in ML ε-Differential Privacy

Intuitively, an algorithm is ε-differentially private if outcome of a statistical query on a database cannot change by more than ε due to presence/absence of any user data record

Example of Statistical Query:

"Average Income of all users between ages 25 and 30"

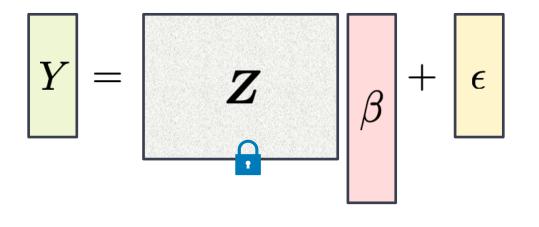
How to achieve ε-differentially privacy? Laplace Mechanism



database

Predictive Accuracy vs. Privacy Tradeoff

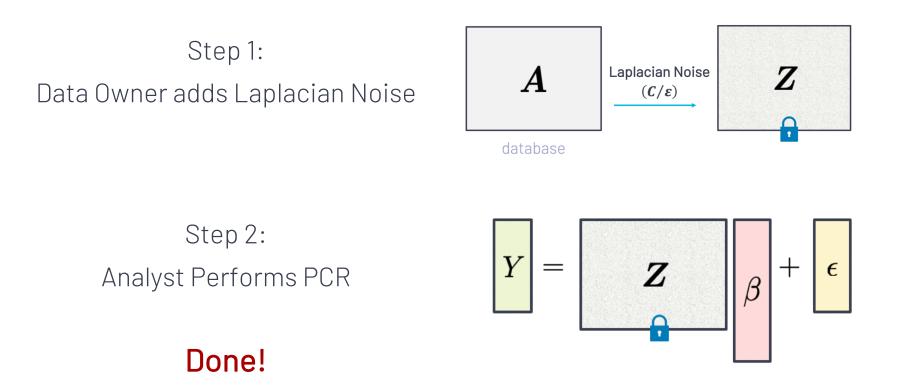
Can we achieve good prediction error and still maintain privacy?



Yes!

Predictive Accuracy vs. Privacy Tradeoff

Can we achieve good prediction error and still maintain privacy?



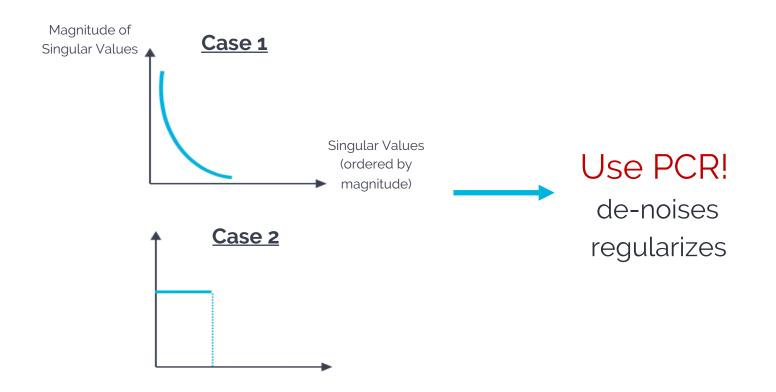
What is sample complexity cost for ϵ -differential privacy?

Prediction Error
$$\sim \frac{\sigma^2 r}{n} \frac{\operatorname{poly}(\log p)}{\rho^4} \left(\frac{1}{\varepsilon^2}\right)$$

Does de-noising step (PCA) break privacy?

No, PCA only de-noises covariates on average with respect to the $\|\cdot\|_{2,\infty}$ - norm

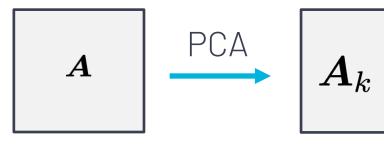
Inspect spectrum of your covariate matrix

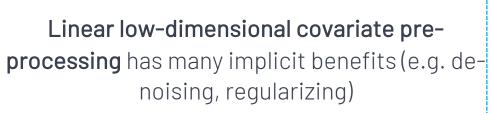


Possible Implications for Modern ML

Linear Case

Step 1: Dimension Reduction





Does non-linear covariate pre-processing (e.g. GANs) have similar benefits for unstructured data?

Come Meet Us At Our Poster

Poster #3 – East Exhibition Hall B + C, 5-7pm, Thursday

Shameless Plug:)

PCR for Time Series Analysis: tspdb.mit.edu

PCR for Causal Inference: github.com/Romcos/SC_demo