Optimal Sparse Decision Trees

Carnegie Mellon University

Xiyang Hu

Carnegie Mellon University

Cynthia Rudin

Duke University

Margo Seltzer

University of British Columbia

Buildings and or pausodder os isni o

Salad an al Martin and Ashield

520EJ da-3peu

a classing the Cooper and Jackson

pressent 3 upp Say Apres and uppes onut

the set part in the set of the se

Buildings and of pausident of 15th offa

Caller In Barring at Ashles

sasel da-apeu

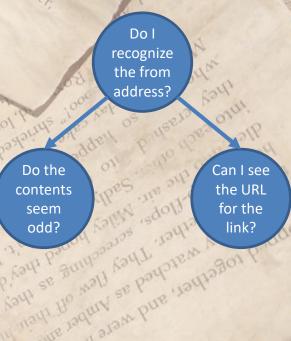
upster pue adoo on puseis A

Project 2 upip Source apres one upos one.

read for the set of th

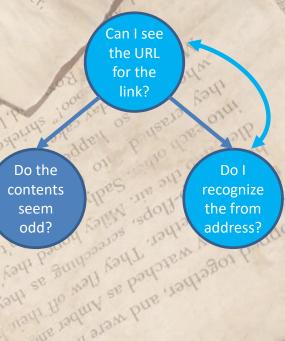
and and a second

Should I click on the link in this email?



her bin Daddy. W said. "I ju dresses be "You kn

Should I click on the link in this email?

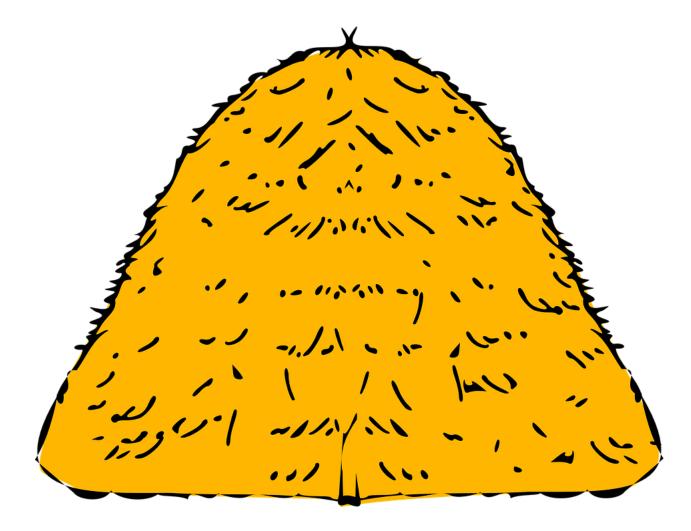


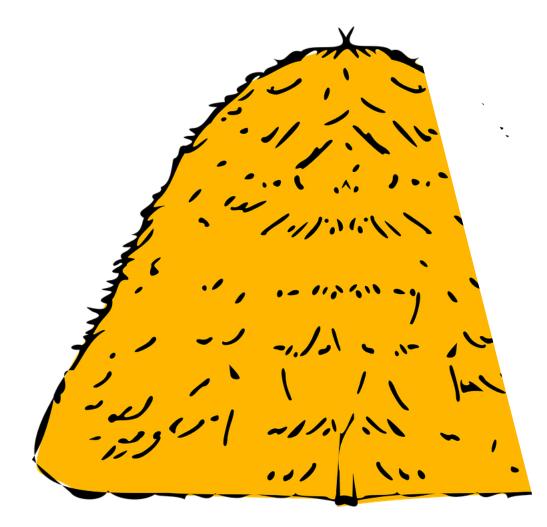
her bin (Daddy. I) said. "I ju dresses be "You kn

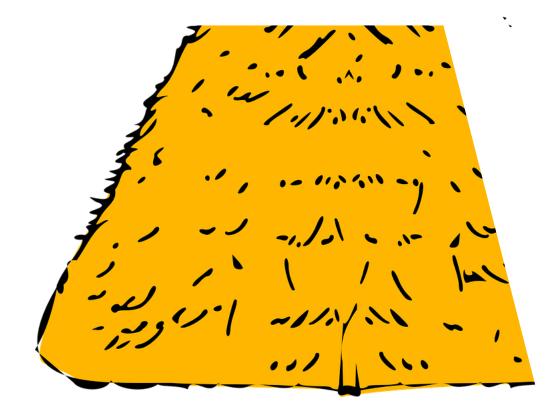
Why not just find the Best Tree?

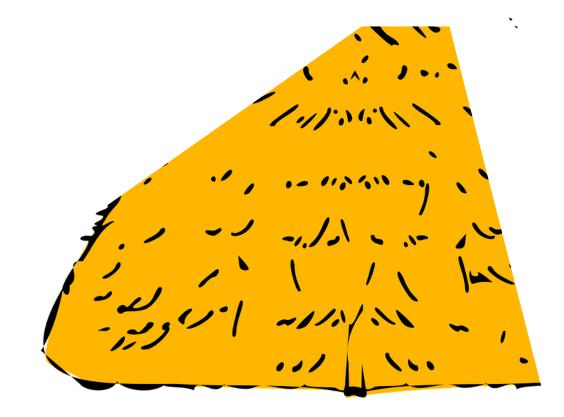
Why not just find the Best Tree?

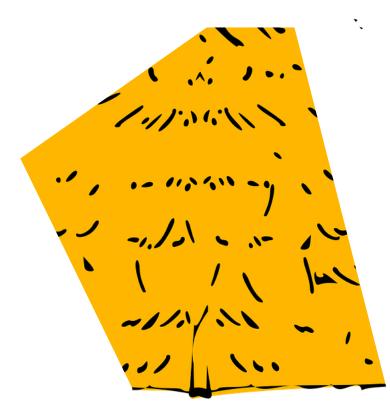
$O(10^{28})$

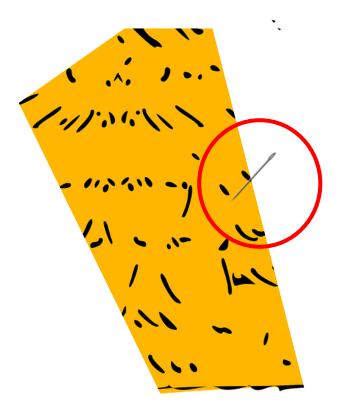


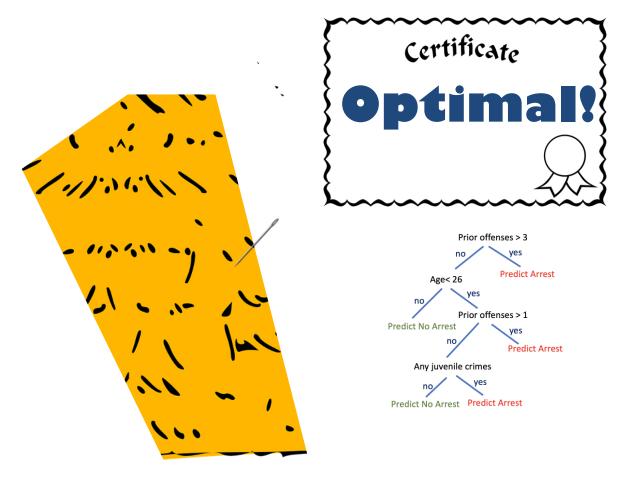












The Optimization Problem

$$\hat{L}(\text{tree},\{(x_i, y_i)\}_i) = \frac{1}{n} \mathop{a}\limits_{i=1}^n 1_{[\text{tree}(x_i)^{\top}y_i]} + C(\text{\# leaves in tree})$$

The Optimization Problem

$$\hat{L}(\text{tree}, \{(x_i, y_i)\}_i) = \frac{1}{n} \bigotimes_{i=1}^n \mathbb{1}_{[\text{tree}(x_i)^{\top}y_i]} + C(\text{\# leaves in tree})$$

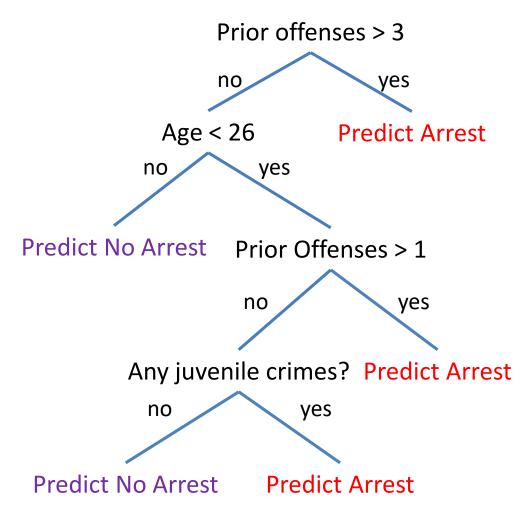
$$Misclassification error$$

The Optimization Problem

$$\hat{L}(\text{tree}, \{(x_i, y_i)\}_i) = \frac{1}{n} \bigotimes_{i=1}^n \mathbb{1}_{[\text{tree}(x_i)^1 y_i]} + C(\text{\# leaves in tree})$$

$$Misclassification error Sparsity$$

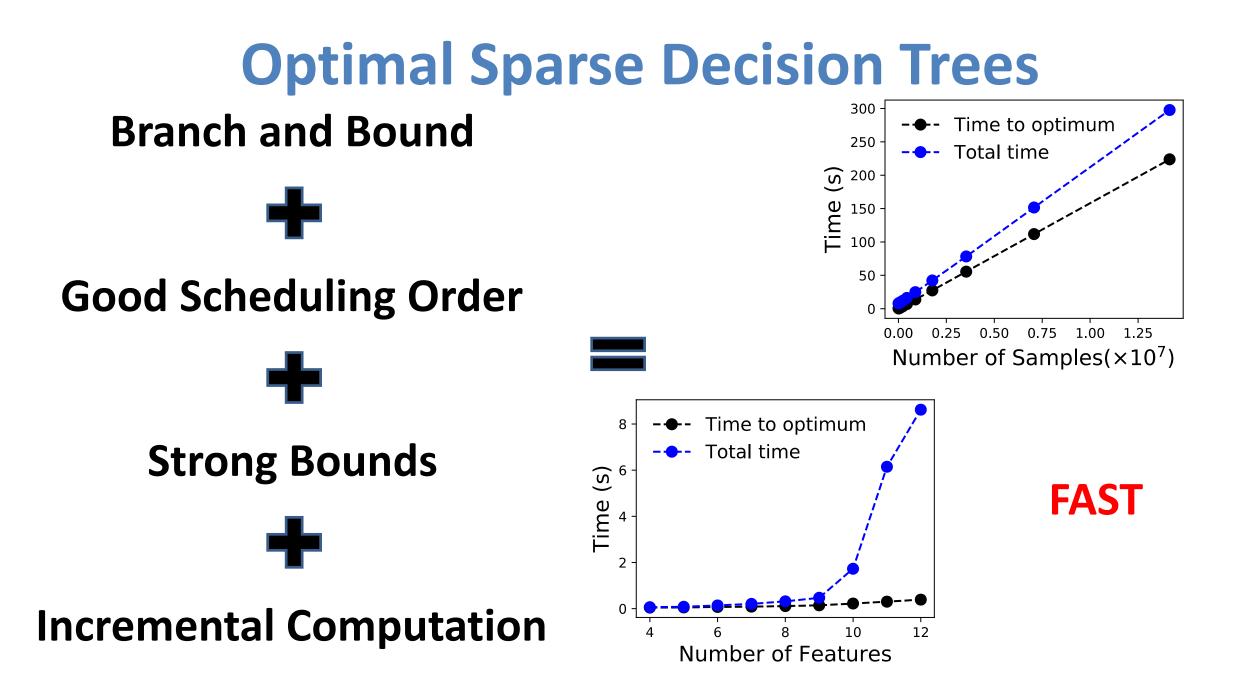
Optimal Sparse Decision Tree (Broward County Recidivism Data)

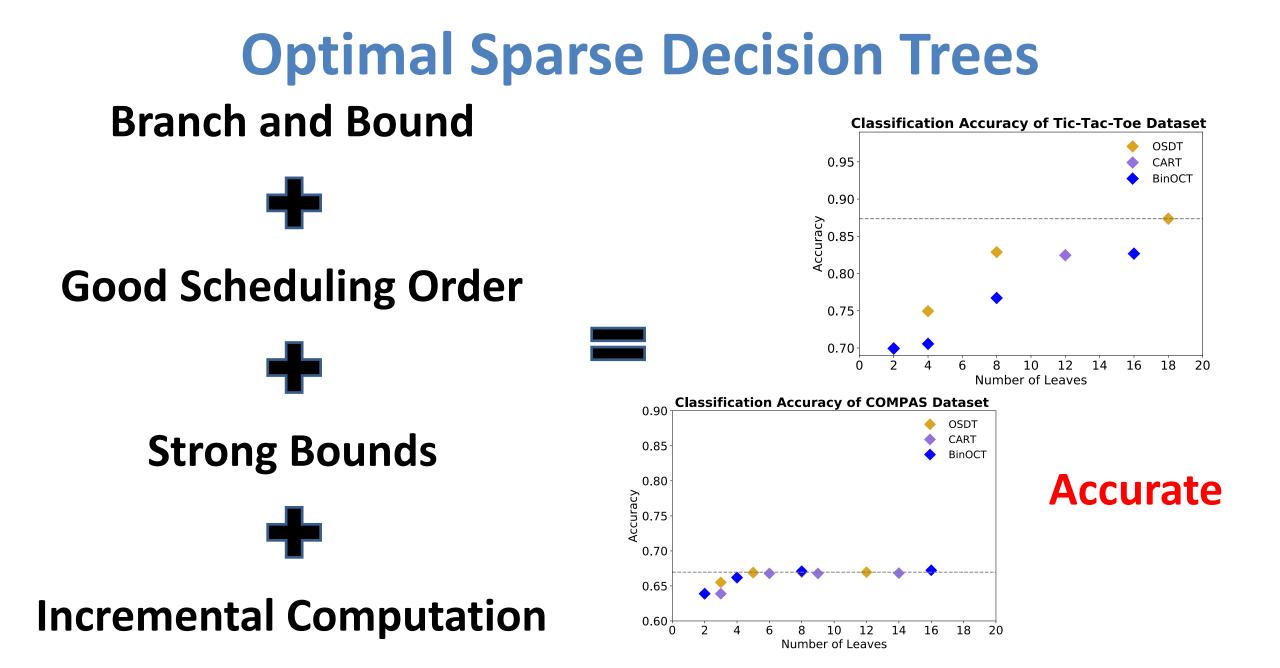


Optimal Sparse Decision Trees Branch and Bound

+

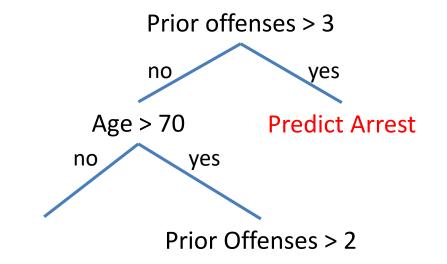
Incremental Computation





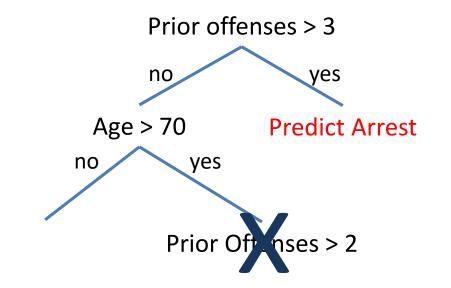
Lower Bound on Node Support

Theorem: For an optimal tree, the support of each node must be above 2C.



Lower Bound on Node Support

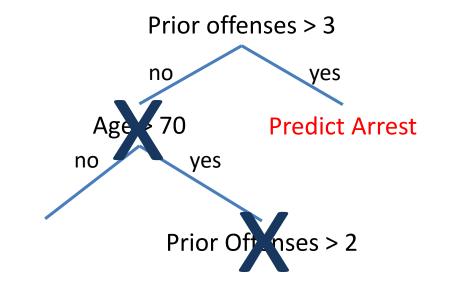
Theorem: For an optimal tree, the support of each node must be above 2C.



Node support insufficient to produce optimal solution

Lower Bound on Node Support

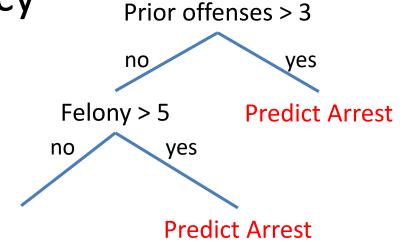
Theorem: For an optimal tree, the support of each node must be above 2C.



Node support insufficient to produce optimal solution

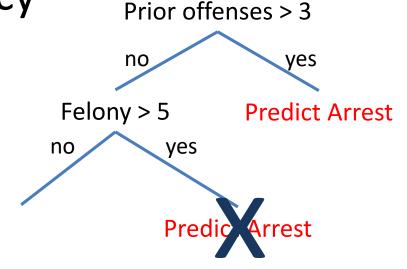
Lower Bound on Classification Accuracy

Theorem: Each leaf of an optimal tree correctly classifies at least fraction *C* of the data



Lower Bound on Classification Accuracy

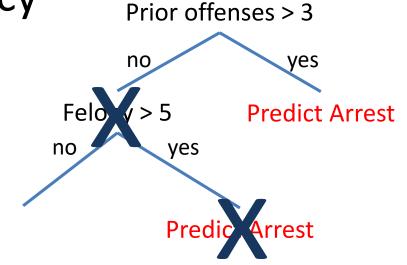
Theorem: Each leaf of an optimal tree correctly classifies at least fraction *C* of the data



Doesn't classify at least *Cn* points correctly.

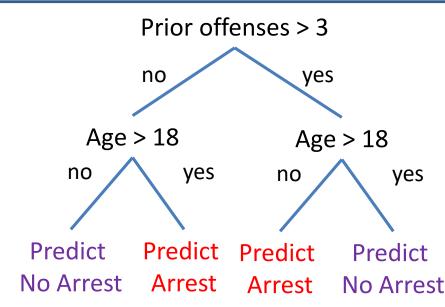
Lower Bound on Classification Accuracy

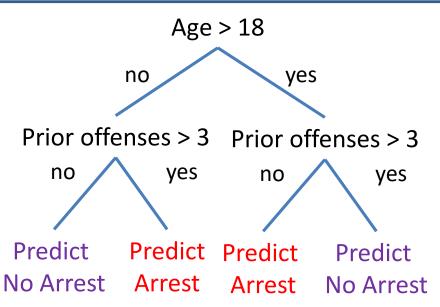
Theorem: Each leaf of an optimal tree correctly classifies at least fraction *C* of the data



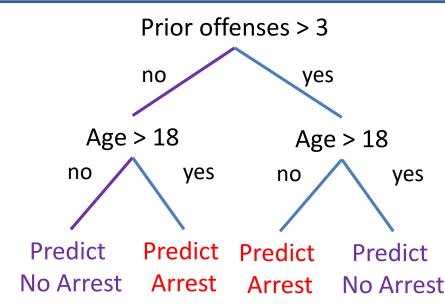
Doesn't classify at least *Cn* points correctly.

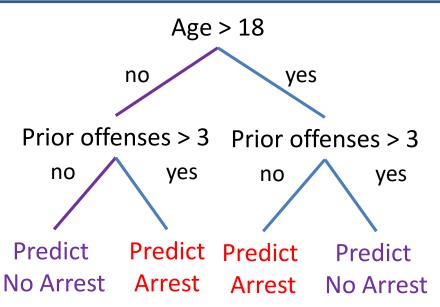
Permutation Bound



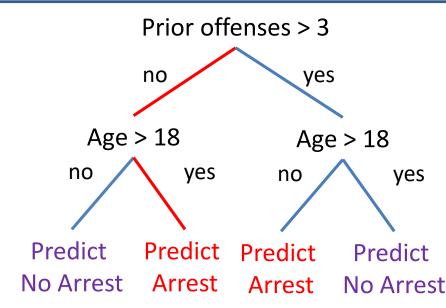


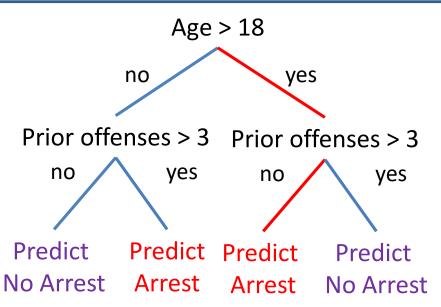
Permutation Bound



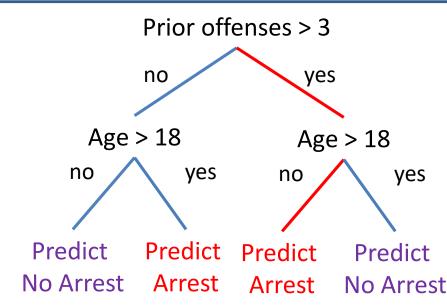


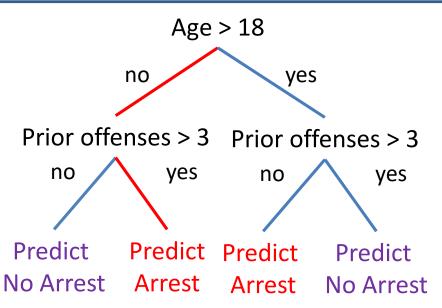
Permutation Bound



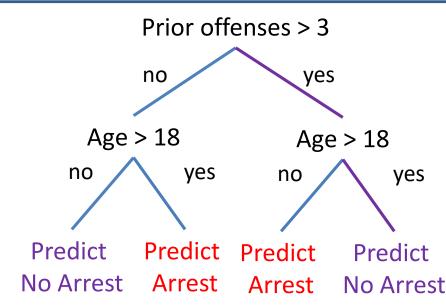


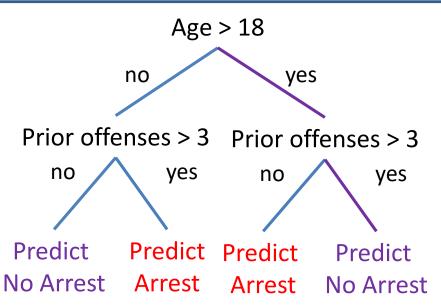
Permutation Bound





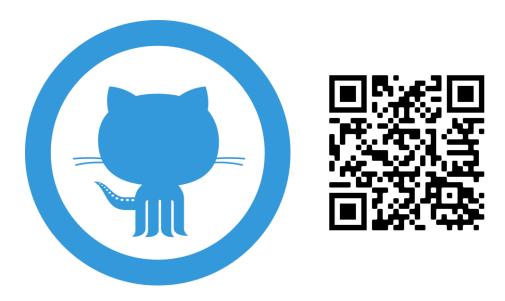
Permutation Bound





- Other bounds enable even more pruning
 - Equivalent points bound: Samples with the same features, but different predictions will produce misclassifications regardless of model.
 - Bound on the number of leaves: Regularization value bounds the number of leaves.

Open Source



https://github.com/xiyanghu/OSDT

