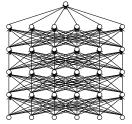
Generalization Bounds for Neural Networks via Approximate Description Length

Amit Daniely (Hebrew University and Google) and Elad Granot (Hebrew University)

December 1, 2019

What is the sample complexity of $\mathcal{N} = \{W_t \circ \rho \dots \circ \rho \circ W_1\}$?

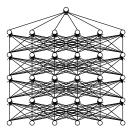


▶ Classical Theory: $\tilde{\Theta}(d^2)$ params $\Rightarrow \tilde{\Theta}(d^2)$ Sample Complexity

Why Networks Generalize with Much Fewer Exampels?

Should we consider bounds on the weights?

$$\mathcal{N} = \{ W_t \circ \rho \dots \circ \rho \circ W_1 : \|W_i\|_F \le R, \|W_i\| \le 1 \}$$



Input Space: $[-1,1]^d$ Width: dDepth: t Activation: ρ Weights: $W_1,\ldots,W_{t-1}\in M_{d\times d}$ and $W_t\in M_{1,d}$

 $\mathcal{N} = \{ W_t \circ \rho \dots \circ \rho \circ W_1 : \|W_i\|_F \le R, \|W_i\| \le 1 \}$

- What is the sample complexity of N?
- For linear $\rho(x) = x$, the sample complexity is $\Theta(dR^2)$
- Can we match this bound for non-linear ρ ?
 - ► [Neyshabur, Tomioka, Srebro 15, Bartlett, Foster, Telgarsky 17, Neyshabur, Bhojanapalli, Srebro 18, Arora, Ge, Neyshabur, Zhang 18, Neyshabur, Li, Bhojanapalli, LeCun, Srebro 19,]: Õ(d²R²)
 - This Work: Yes!

- Radamacher Complexity?
 - Talagrand's concentration lemma is loose in high dimension
 - Many experts failed
- A new technique: Approximate Description Length (ADL)
 - $ADL(\mathcal{H})$: #bits required to approximately describe functions in \mathcal{H}
 - ADL(\mathcal{H}) = $n \Rightarrow$ sample complexity $O\left(\frac{n}{\epsilon^2}\right)$
 - Develop tools to bound ADL
 - Get the correct value for linear classes
 - Behaves nicely with compositions (even in high dimension)