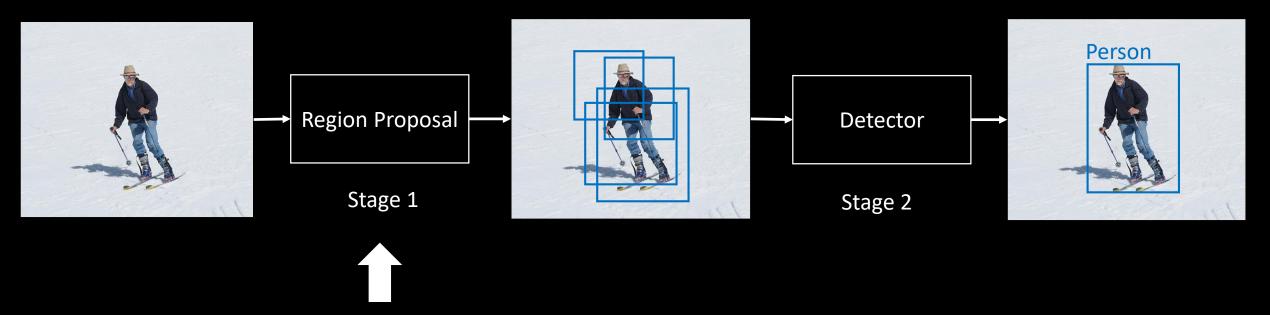
Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution

Thang Vu

Hyunjun Jang

Pham X. Trung

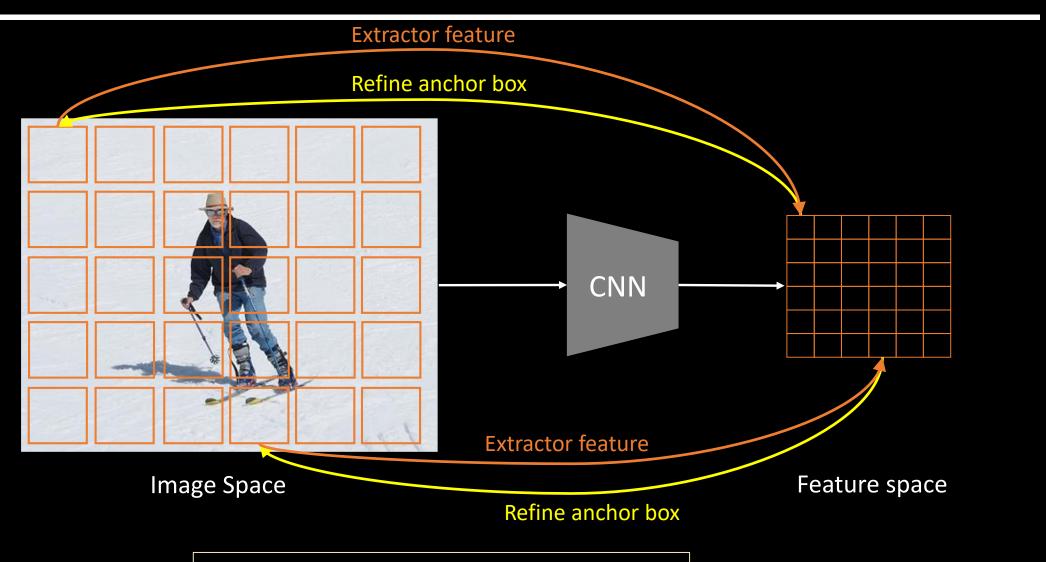

Chang D. Yoo

Korea Advanced Institute of Science and Technology

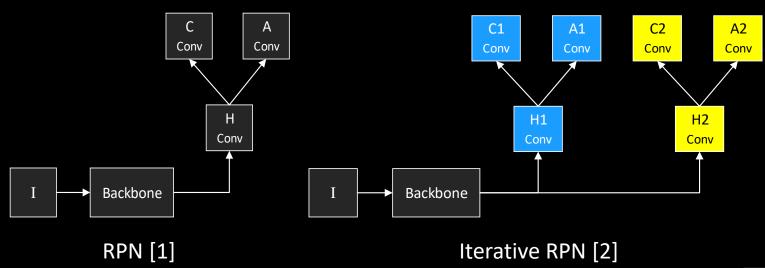


Background

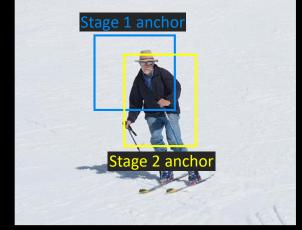
The proposed method aims to improve the RPN in stage 1


Region proposal network

- I: Input image
- Backbone: Feature extractor
- H: Head (shared)
- C: Classifier
- A: Anchor regressor


Region proposal network [1]

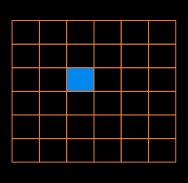
Alignment in RPN

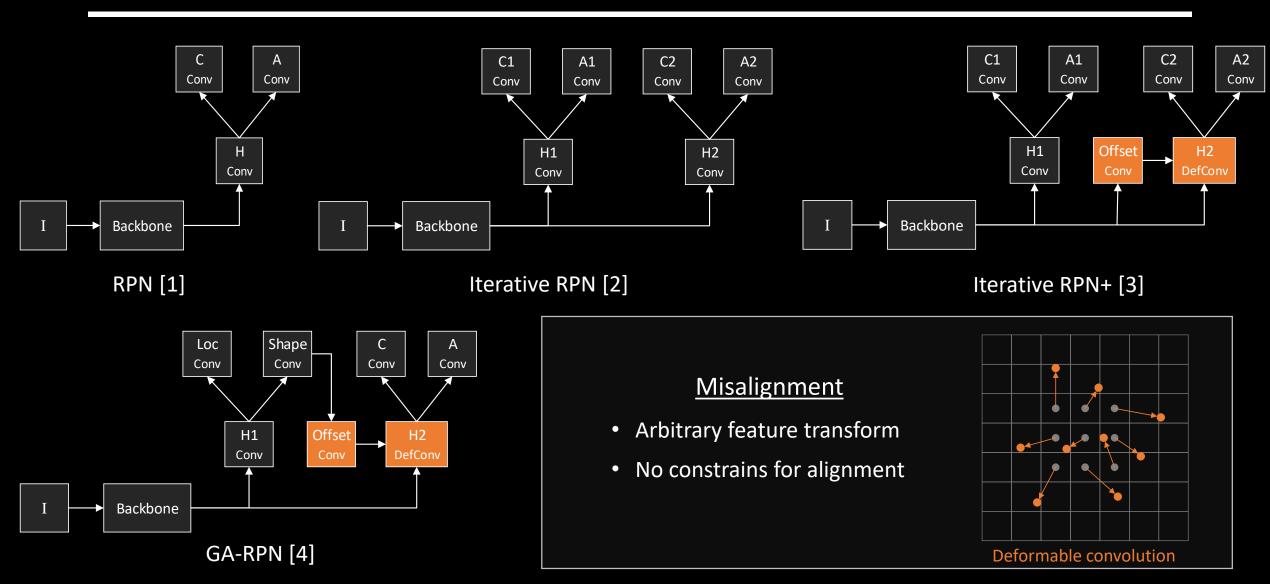

Correspondence = Alignment

Iterative RPN

Misalignment

Anchor shape and position change after being refined



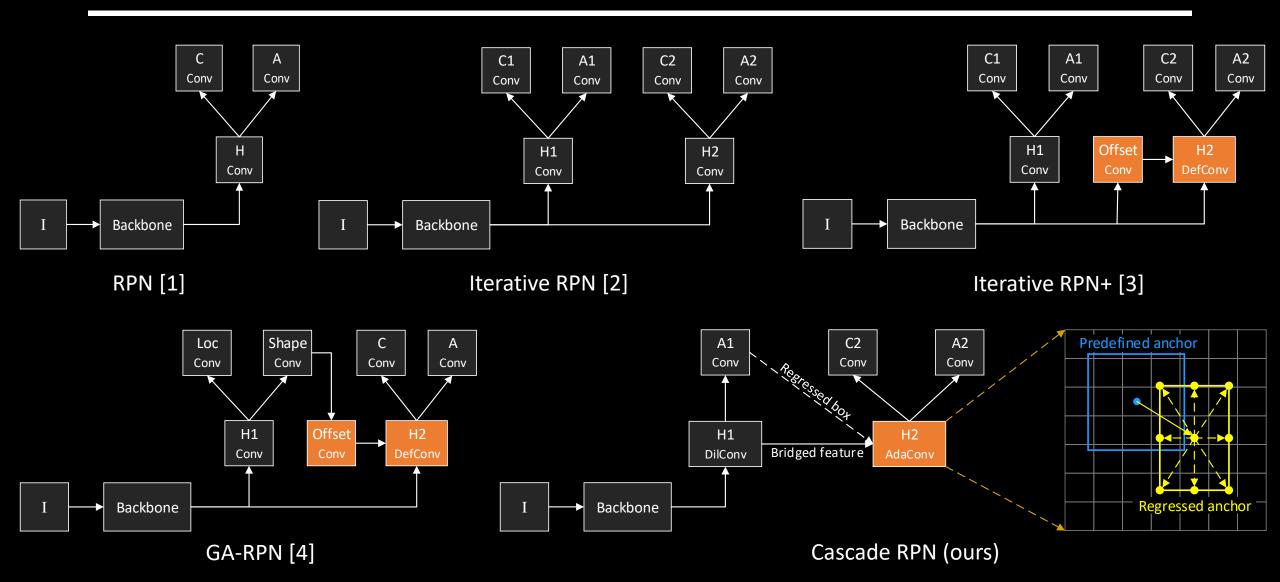

Image space

Feature space

^[1] Ren et al., Toward real-time object detection with RPN, NeurIPS 2015.

^[2] Zhong et al., Cascade region proposal and global context for deep object detection, arXiv 2018.

Iterative RPN+ and GA-RPN



^[1] Ren et al., Toward real-time object detection with RPN, NeurIPS 2015.

^[3] Fan et al., Siamese cascaded region proposal networks for real-time visual tracking. CVPR 2019

^[2] Zhong et al., Cascade region proposal and global context for deep object detection, arXiv 2018. [4] Wang et al., Region proposal by guided anchoring, CVPR 2019.

Proposed Cascade RPN

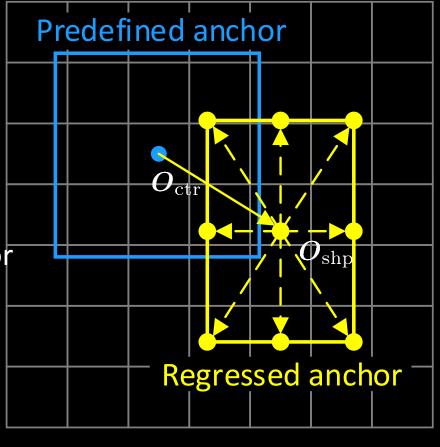
^[1] Ren et al., Toward real-time object detection with RPN, NeurIPS 2015.

^[3] Fan et al., Siamese cascaded region proposal networks for real-time visual tracking. CVPR 2019

^[2] Zhong et al., Cascade region proposal and global context for deep object detection, arXiv 2018. [4] Wang et al., Region proposal by guided anchoring, CVPR 2019.

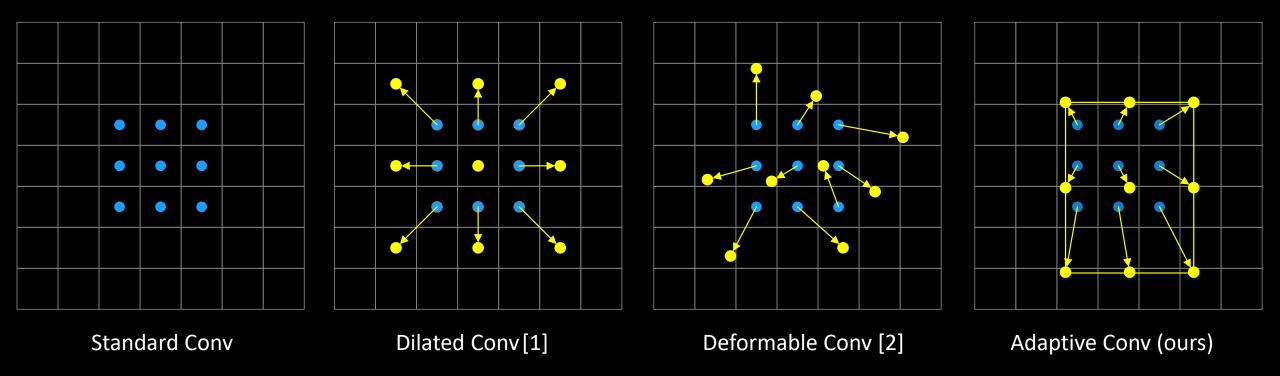
Adaptive Convolution

- Standard Convolution
 - ullet Sample at regular grid ${\mathbb R}$


$$oldsymbol{y}[oldsymbol{p}] = \sum_{oldsymbol{r} \in \mathbb{R}} oldsymbol{w}[oldsymbol{r}] \cdot oldsymbol{x}[oldsymbol{p} + oldsymbol{r}]$$

$$\mathbb{R} = \{(-1, -1), (-1, 0), \dots, (0, 1), (1, 1)\}$$

- Adaptive Convolution
 - ullet Sample at offset grid $\mathbb O$, guided by anchor


$$m{y}[m{p}] = oxedsymbol{\sum_{m{o} \in \mathbb{O}}} m{w}[m{o}] \cdot m{x}[m{p} + m{o}]$$
 $m{o} = m{o}_{ ext{ctr}} + m{o}_{ ext{shp}}$

Position Semantic scope

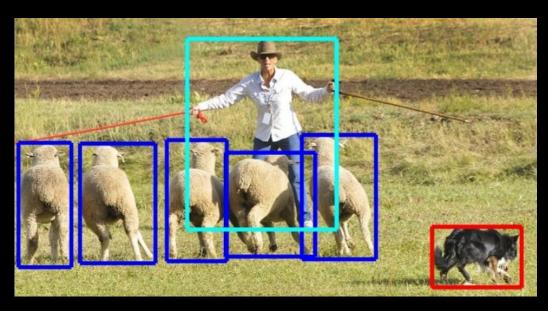
Adaptive conv systematically maintain alignment between features and anchors!

Sampling location

^[1] Yu et al. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv 2015.

^[2] Dai et al. Deformable Convolutional Networks. ICCV 2017.

Experiments


• Dataset: COCO2017 [1]

• Train: 115k images

• Val: 5k images

• Test-dev: 20k images

- Evaluation metric:
 - Average Recall (AR) for Region Proposal performance
 - Average Precision (AP) for Detection performance
 - Runtime is measured on a single V100

Region Proposal Results

Method	Backbone	AR ₁₀₀	AR ₃₀₀	AR ₁₀₀₀	AR _S	AR_M	AR_L	Time (s)
SharpMask [1]	ResNet-50	36.4	-	48.2	-	-	-	0.76
GCN-NS [2]	VGG-16	31.6	-	60.7	-	-	-	0.10
AttractioNet [3]	VGG-16	53.3	-	66.2	31.5	62.2	77.7	4.00
ZIP [4]	BN-inception	53.9	-	76.0	31.9	63.0	78.5	1.13
RPN [5]		44.6	52.9	58.3	29.5	51.7	61.4	0.04
Iterative RPN		48.5	55.4	58.8	32.1	56.9	65.4	0.05
Iterativve RPN+	ResNet-50	54.0	60.4	63.0	35.6	62.7	73.9	0.06
GA-RPN [6]		59.1	65.1	68.5	40.7	68.2	78.4	0.06
Cascade RPN		61.1	67.6	71.7	42.1	69.3	82.8	0.06

^[1] Pinhero et al. Learning to refine object segments. ECCV 2016.

^[2] Lu et al. Toward scale-invariance and position-sensitive region proposal networks.. ECCV 2018.

^[3] Gidaris et al. Attend refine repeat: Active box proposal generation via in-out localization. arXiv 2016.

^[4] Li et al. Zoom out-and-in network with map attention decision for region proposal and object detection. IJCV 2019.

^[5] Ren et al. Faster r-cnn: Towards real-time object detection with region proposal networks. NeuIPS 2015.

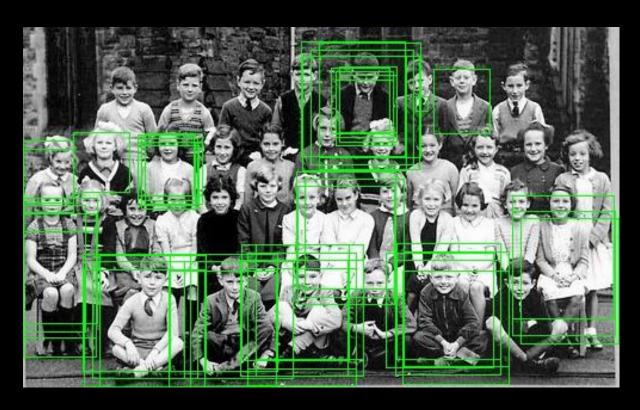
^[6] Wang et al. Region proposal by guided anchoring. CVPR 2019.

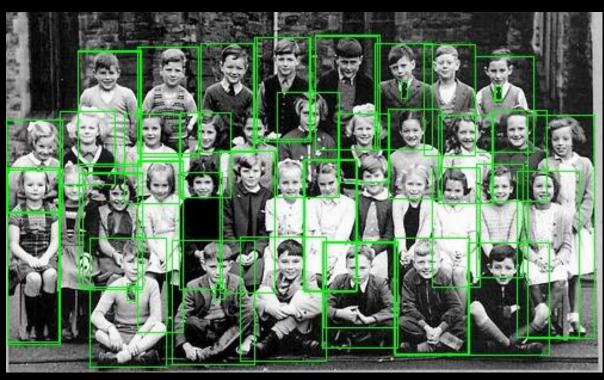
Region Proposal Results

Method	Backbone	AR ₁₀₀	AR ₃₀₀	AR ₁₀₀₀	AR_S	AR_M	AR_L	Time (s)
SharpMask [1]	ResNet-50	36.4	-	48.2	-	-	-	0.76
GCN-NS [2]	VGG-16	31.6	-	60.7	-	-	-	0.10
AttractioNet [3]	VGG-16	53.3	-	66.2	31.5	62.2	77.7	4.00
ZIP [4]	BN-inception	53.9	-	76.0	31.9	63.0	78.5	1.13
RPN [5]		44.6	52.9	58.3	29.5	51.7	61.4	0.04
Iterative RPN		48.5	55.4	58.8	32.1	56.9	65.4	0.05
Iterativve RPN+	ResNet-50	54.0	60.4	63.0	35.6	62.7	73.9	0.06
GA-RPN [6]		59.1	65.1	68.5	40.7	68.2	78.4	0.06
Cascade RPN		61.1 (+2.0)	67.6 (+2.5)	71.7 (+3.2)	42.1 (+1.4)	69.3 (+1.1)	82.8 (+4.4)	0.06 (+0.0)

^[1] Pinhero et al. Learning to refine object segments. ECCV 2016.

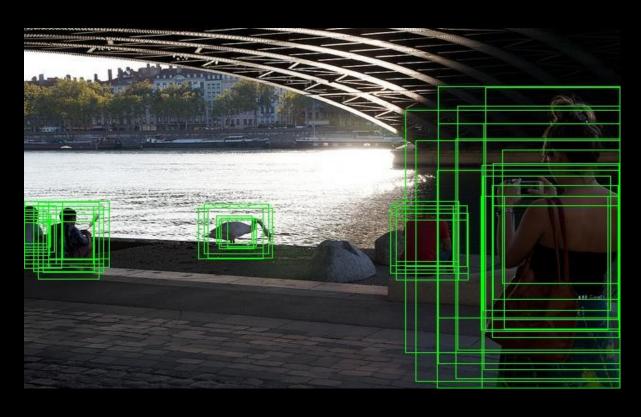
^[2] Lu et al. Toward scale-invariance and position-sensitive region proposal networks.. ECCV 2018.

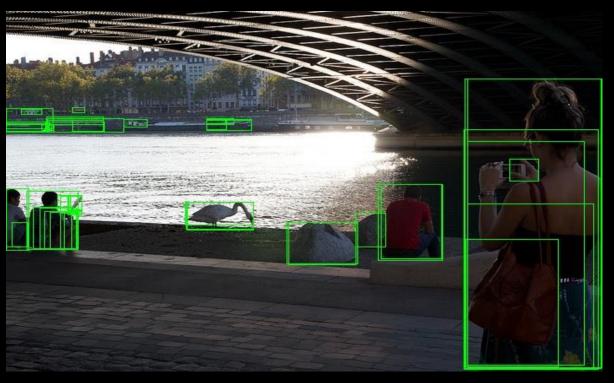

^[3] Gidaris et al. Attend refine repeat: Active box proposal generation via in-out localization. arXiv 2016.


^[4] Li et al. Zoom out-and-in network with map attention decision for region proposal and object detection. IJCV 2019.

^[5] Ren et al. Faster r-cnn: Towards real-time object detection with region proposal networks. NeuIPS 2015.

^[6] Wang et al. Region proposal by guided anchoring. CVPR 2019.


Qualitative Results



Stage 1 Stage 2

Qualitative Results

Stage 1 Stage 2

Detection Results

Detector	Proposal method	AP	AP ₅₀	AP ₇₅	AP_S	AP_M	AP_L
Fast R-CNN [1]	RPN [2]	36.6	58.6	39.5	20.3	39.1	47.0
	Iterative RPN+	38.8	58.8	42.2	21.1	41.5	50.0
	GA-RPN [3]	39.5	59.3	43.2	21.8	42.0	50.7
	Cascade RPN	40.1	59.4	43.8	22.1	42.4	51.6
Faster R-CNN [2]	RPN [2]	36.9	58.9	39.9	21.1	39.6	46.5
	Iterative RPN+	39.2	58.2	43.0	21.5	42.0	50.4
	GA-RPN [3]	39.9	59.4	43.6	22.0	42.6	50.9
	Cascade RPN	40.6	58.9	44.5	22.0	42.8	52.6

^[1] Ross B. Girshick. Fast R-CNN. ICCV 2015.

^[2] Ren et al. Faster r-cnn: Towards real-time object detection with region proposal networks. NeuIPS 2015.

^[3] Wang et al. Region proposal by guided anchoring. CVPR 2019.

Summary

- Alignment is not well persevered in existing multi-stage RPN.
- Cascade RPN systematically ensures alignment by Adaptive Convolution.
- Cascade RPN achieves state-of the-art proposal performance on COCO dataset.

Poster #86 at East Exhibition Hall B + C

Thank you!

Code is available at:

https://github.com/thangvubk/Cascade-RPN