

模式识别国家重点实验室 National Lab of Pattern Recognition

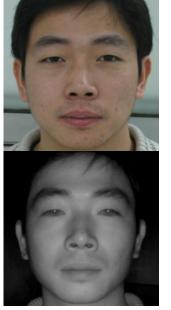
Dual Variational Generation for Low Shot Heterogeneous Face Recognition

Chaoyou Fu, Xiang Wu Yibo Hu, Huaibo Huang and Ran He

NLPR & CRIPAC, CASIA University of Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, CAS

Heterogeneous Face Recognition

• Diverse modalities



NIR

Thermal

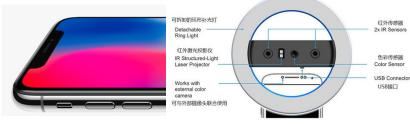
Sketch

ID Card

Video

Profile

• Broad applications



Mobile Phone

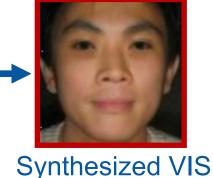
Criminology

Gate

Heterogeneous Face Recognition

- Challenges in HFR
 - Large domain gap between heterogeneous data
 - The lack of large-scale databases
- Generative model for HFR
 - Conditional image synthesis translate NIR to VIS to reduce domain gap
 - Unconditional image synthesis generate images from noise

Conditional Synthesis



Input NIR

Noise

Unconditional Synthesis

Synthesized NIR and VIS

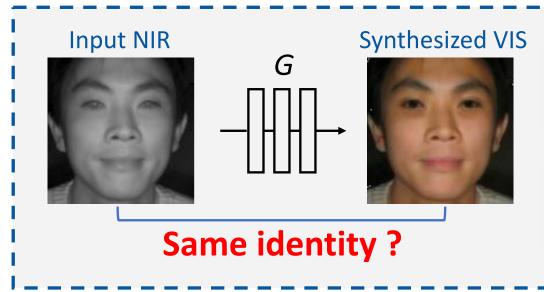
Conditional Image Synthesis

- Two challenges of such image-to-image translation methods
 - Diversity:

Limited number of images and intra-class diversity

Consistency:

Difficulty in preserving identity



Only synthesize **one** new image of the target domain with **same attributes**

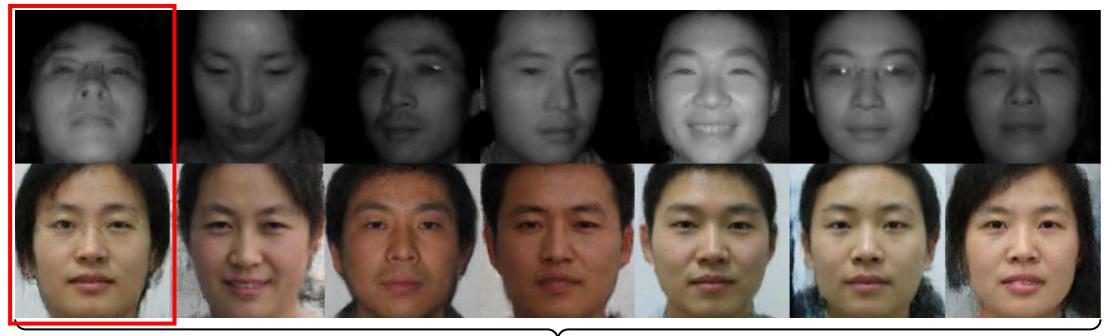
It is challenging to guarantee the **identity consistency**

Dual Variational Generation

- Generate **paired** new heterogeneous data from **noise**
 - Sample large-scale new images with abundant intra-class diversity
 - Ensure the identity consistency of the generated paired images

Same identity

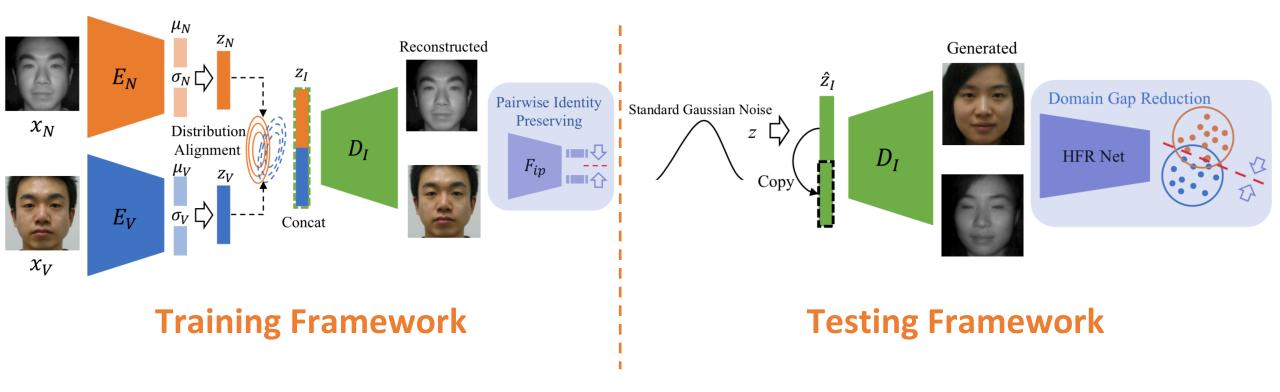
Abundant intra-class diversity



Large-scale new images

Dual Variational Generation

- Training method
- $\begin{array}{lll} \succ & \mbox{Learn the joint distribution} & \succ & \mbox{Align the distributions} & \succ & \mbox{Preserve pairwise} \\ & \mbox{of paired data} & & \mbox{via Wasserstein distance} & & \mbox{identity via } F_{ip} \end{array}$



Experiments

NIR-VIS



CASIA NIR-VIS 2.0 database
 BUAA-VisNir database
 Oulu-CASIA NIR-VIS database
 Baseline: VR@FAR=0.1% = 97.4%
 Baseline: VR@FAR=0.1% = 89.4%
 Baseline: VR@FAR=0.1% = 68.3%
 DVG: VR@FAR=0.1% = 97.3%
 DVG: VR@FAR=0.1% = 92.9%

Improving 2.4%

Improving 7.9%

Improving 24.6%

Experiments

Thermal-VIS

Sketch-Photo

Profile-Frontal Face

Tufts Face database
 Baseline: Rank-1 = 37.5%
 DVG: Rank-1 = 53%

Improving 15.5%

IIIT-D Viewed Sketch database
 Baseline: VR@FAR=1% = 81.04%
 DVG: VR@FAR=1% = 97.86%

Improving 16.82%

Multi-PIE database
 Baseline: Rank-1 = 65.4%
 DVG: Rank-1 = 83.9%

Improving 18.5%

Poster: 05:30 -- 07:30 PM @ East Exhibition Hall B + C #66

Code is released: https://github.com/BradyFU/DVG

Dual Variational Generation for Low Shot Heterogeneous Face Recognition 🛼 CRIPAC

Chaoyou Fu^{1,2,3}, Xiang Wu^{1,2}, Yibo Hu^{1,2}, Huaibo Huang^{1,2}, Ran He^{1,2,3,4} ¹ Center for Research on Intelligent Perception and Computing, CASIA ² National Laboratory of Pattern Recognition, CASIA ³ University of Chinese Academy of Sciences ⁴ Center for Excellence in Brain Science and Intelligence Technology, CAS

Background

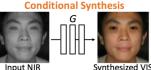
- Heterogeneous Face Recognition is a challenging issue because of the large domain discrepancy and a lack of heterogeneous data
- Previous image-to-image translation based methods face two challenges

Diversity

Given one image, a generator only synthesizes one new image of the target domain, resulting in **limited number of images**. Moreover, two images before and after translation have same attributes except for the spectral information, leading to **limited intra-class diversity**

> Consistency

When generating large-scale samples, it is challenging to guarantee that the synthesized face images belong to the same identity of the input images



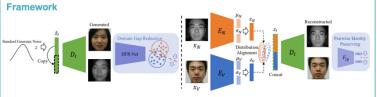
Dual Variational Generation

- Generate **paired** new heterogeneous data from **noise**
- > Sample large-scale new images with abundant intra-class diversity
- > Ensure the identity consistency of the generated paired images

Same identity

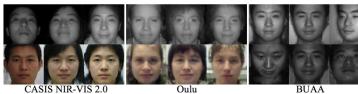
Abundant intra-class diversity

Large-scale new images



The purpose (left part) and training model (right part). It generates large-scale new paired heterogeneous images with the same identity from standard Gaussian noise, aiming at reducing the domain discrepancy for HFR. A **distribution alignment** in the latent space and a **pairwise identity preserving** in the image space are imposed to guarantee the identity consistency of the generated paired images

Visual Results



Quantitative Results								
Method	CASIA NIR-VIS 2.0		Oulu-CASIA NIR-VIS			BUAA-VisNir		
	Rank-1	FAR=0.1%	Rank-1	FAR=1%	FAR=0.1%	Rank-1	FAR=1%	FAR=0.1%
IDNet [29]	87.1 ± 0.9	74.5	-	-	-	-	-	-
HFR-CNN [30]	85.9 ± 0.9	78.0	-	-	-	-	-	-
Hallucination [23]	89.6 ± 0.9	-	-	-	-	-	-	-
DLFace [28]	98.68	-	-	-	-	-	-	-
TRIVET [26]	95.7 ± 0.5	91.0 ± 1.3	92.2	67.9	33.6	93.9	93.0	80.9
IDR [10]	97.3 ± 0.4	95.7 ± 0.7	94.3	73.4	46.2	94.3	93.4	84.7
W-CNN [11]	98.7 ± 0.3	98.4 ± 0.4	98.0	81.5	54.6	97.4	96.0	91.9
DVR [35]	99.7 ± 0.1	99.6 ± 0.3	100.0	97.2	84.9	99.2	98.5	96.9
RCN [4]	99.3 ± 0.2	98.7 ± 0.2	-	-	-	-	-	-
MC-CNN [3]	99.4 ± 0.1	99.3 ± 0.1	-	-	-	-	-	-
LightCNN-9	97.1 ± 0.7	93.7 ± 0.8	93.8	80.4	43.8	94.8	94.3	83.5
LightCNN-9 + DVG	99.2 ± 0.3	98.8 ± 0.3	100.0	97.6	89.5	98.0	97.1	93.1
LightCNN-29	98.1 ± 0.4	97.4 ± 0.5	99.0	93.1	68.3	96.8	97.0	89.4
LightCNN-29 + DVG	99.8 ± 0.1	99.8 ± 0.1	100.0	98.5	92.9	99.3	98.5	97.3

Objective

Lean the joint distribution

$$\begin{split} \mathcal{L}_{\mathrm{rec}} &= -\mathbb{E}_{q_{\phi_N}(z_N|x_N) \cup q_{\phi_V}(z_V|x_V)} \log p_{\theta}(x_N, x_V|z_I) \\ \mathcal{L}_{\mathrm{kl}} &= D_{\mathrm{KL}}(q_{\phi_N}(z_N|x_N) || p(z_N)) + D_{\mathrm{KL}}(q_{\phi_V}(z_V|x_V) || p(z_V)) \end{split}$$

Align the distributions

 $\mathcal{L}_{\text{dist}} = \frac{1}{2} \left[||u_N^{(i)} - u_V^{(i)}||_2^2 + ||\sigma_N^{(i)} - \sigma_V^{(i)}||_2^2 \right]$

Pairwise Identity Preserving

$$\begin{split} \mathcal{L}_{\text{ip-pair}} &= ||F_{ip}(\hat{x}_N) - F_{ip}(\hat{x}_V)||_2^2 \\ \mathcal{L}_{\text{ip-rec}} &= ||F_{ip}(\hat{x}_N) - F_{ip}(x_N)||_2^2 + ||F_{ip}(\hat{x}_V) - F_{ip}(x_V)||_2^2 \end{split}$$

More Experiments

 ➤ Tufts Face database
 ➤ IIIT-D Viewed Sketch database
 ➤ Multi-PIE database

 Baseline: Rnk-1 = 37.5%
 Baseline: VR@FAR=1% = 81.04%
 Baseline: Rnk-1 = 65.4%

 DVG: Rnk-1 = 53%
 DVG: VR@FAR=1% = 91.86%
 DVG: Rnk-1 = 83.9%

 Improving 15.5%
 Improving 16.82%
 Improving 18.5%

Contributions

- We provide a new insight into the problems of HFR. That is, we consider HFR as a dual generation problem, and propose a novel dual variational generation framework. This framework generates new paired heterogeneous images with abundant intra-class diversity
- We can sample large-scale diverse paired heterogeneous images from noise. By constraining the pairwise feature distances of the generated paired images in the HFR network, the domain discrepancy is effectively reduced