Large Memory Layers with Product Keys

Guillaume Lample, Alexandre Sablayrolles, Marc'Aurelio Ranzato, Ludovic Denoyer, Hervé Jégou Code: https://github.com/facebookresearch/XLM

Motivation

- Neural networks benefit from more capacity:
 - Increase the network depth
 - Increase the network width
- Performance keeps improving with network size
- Problems:
 - Training is too slow, as well as inference
 - Model size is limited by GPU capacity

Product—Key Memory Layers

Challenge: the retrieval cost is linear in the number of keys/values

Product—Key Memory Layers

• subkey set 1 and subkey set 2 induce a much larger set of keys, never made explicit

Product—Key Memory Layers

- subkey set 1 and subkey set 2 induce a much larger set of keys, never made explicit
- Retrieval over the product keys set can be done extremely efficiently
- Flat keys retrieval cost: $\mathcal{O}(|\mathcal{K}| \times d_{\mathrm{q}})$ Product keys retrieval cost: $\mathcal{O}\left((\sqrt{|\mathcal{K}|} + k^2) \times d_{\mathrm{q}}\right)$

$$\mathcal{O}\left(\left(\sqrt{|\mathcal{K}|} + k^2\right) \times d_{\mathbf{q}}\right)$$

Product—Key Memory Layers (PKM)

- PKM layer inside a transformer network
- Train on a very large corpus of news articles
 - 160 GB of text, 40 millions English news articles
- We evaluate the perplexity with/without memory on language modeling

Product—Key Memory Layers (PKM)

- A PKM layer gives a negligible computational overhead
- Models with 12 layers and a memory outperform models with 24 layers, for half the running time

Inference speed

- With regular keys, increasing the memory size significantly deteriorates the inference speed
- With product keys, the model speed is barely affected by the size of the memory

Thank you