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Adversarial examples

• ML models learn very different features than humans 
• This is a safety concern for deployed ML models  
• Classification in adversarial settings is hard  
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Adversarial training

Szegedy et al., 2014 
Madry et al., 2017

1. Choose a set of perturbations: e.g., noise of small ℓ∞ norm:

2. For each example          , find an adversarial example:

3. Train the model on  

4. Repeat until convergence
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How to prevent other adversarial examples?

S1 = {δ: ❘❘δ❘❘∞ ≤ ε∞} S2 = {δ: ❘❘δ❘❘1 ≤ ε1} S3 = {𝛿:«small rotation»}

β= 1.0 0.75 0.5 0.25 0.0

ũ∞RT

β= 1.0 0.75 0.5 0.25 0.0

ũ∞RT

β= 1.0 0.75 0.5 0.25 0.0

ũ∞RT
Adversary can 

choose a perturbation 
type for each input



• Pick worst-case adversarial example from S 
• Train the model on that example
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How to prevent other adversarial examples?

S1 = {δ: ❘❘δ❘❘∞ ≤ ε∞} S2 = {δ: ❘❘δ❘❘1 ≤ ε1} S3 = {𝛿:«small rotation»}

β= 1.0 0.75 0.5 0.25 0.0

ũ∞RT

β= 1.0 0.75 0.5 0.25 0.0

ũ∞RT

β= 1.0 0.75 0.5 0.25 0.0

ũ∞RTS = S1 ⋃ S2 ⋃ S3

Adversary can 
choose a perturbation 

type for each input
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Does this work?
A robustness tradeoff is provably inherent 

in some classification tasks 
 

Increased robustness to one type of noise  
⇒ decreased robustness to another 

Empirically validated on CIFAR10 & MNIST 
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Does this work?
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Does this work?
A robustness tradeoff is provably inherent 

in some classification tasks 
 

Increased robustness to one type of noise  
⇒ decreased robustness to another 

Empirically validated on CIFAR10 & MNIST 

MNIST: gradient  
masking

For ℓ∞, ℓ1 and ℓ2 noise: 

50% accuracy
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What if we combine perturbations?

β= 1.0 0.75 0.5 0.25 0.0

ũ∞RT
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ũ∞RT
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natural image rotation ℓ∞ noise ½ rotation + ½ ℓ∞ noise

No noise One noise 
type

One of two 
noise types

Mixture of two 
noise types
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Conclusion
Adversarial training for multiple perturbation sets works, but...
• Significant loss in robustness

• Weak robustness to affine combinations of perturbations 

https://arxiv.org/abs/1904.13000 Pos
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Conclusion
Adversarial training for multiple perturbation sets works, but...
• Significant loss in robustness

• Weak robustness to affine combinations of perturbations 

Open questions:
• Train a single MNIST model with high robustness to any ℓp noise

• Better scaling of multi-perturbation adversarial training 

• Which perturbations do we care about?
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