Adversarial Training and Robustness for Multiple Perturbations

Florian Tramèr & Dan Boneh NeurIPS 2019

Adversarial examples

Szegedy et al., 2014 Goodfellow et al., 2015 Athalye, 2017

Stanford University

Adversarial Training and Robustness for Multiple Perturbations

Adversarial examples

- ML models learn very different features than humans
- This is a safety concern for deployed ML models
- Classification in adversarial settings is hard

Szegedy et al., 2014 Goodfellow et al., 2015 Athalye, 2017

Adversarial training

Szegedy et al., 2014 Madry et al., 2017

Adversarial Training and Robustness for Multiple Perturbations

Adversarial training

1. Choose a set of perturbations: e.g., noise of small ℓ_{∞} norm:

Szegedy et al., 2014 Madry et al., 2017

Adversarial Training and Robustness for Multiple Perturbations

Adversarial training

1. Choose a set of perturbations: e.g., noise of small ℓ_{∞} norm:

4. Repeat until convergence

Szegedy et al., 2014 Madry et al., 2017

How well does it work?

Adversarial Training and Robustness for Multiple Perturbations

How well does it work?

Adversarial training on CIFAR10, with ℓ_{∞} noise

Adversarial Training and Robustness for Multiple Perturbations

How well does it work?

Adversarial training on CIFAR10, with ℓ_{∞} noise

Adversarial Training and Robustness for Multiple Perturbations

How to prevent other adversarial examples?

Adversarial Training and Robustness for Multiple Perturbations

How to prevent other adversarial examples?

 $S_1 = \{\delta: \|\delta\|_{\infty} \le \varepsilon_{\infty}\}$ $S_2 = \{\delta: \|\delta\|_1 \le \varepsilon_1\}$ $S_3 = \{\delta: \|\delta\|_1 \ \text{otation} \ \}$

Adversarial Training and Robustness for Multiple Perturbations

How to prevent other adversarial examples?

Adversarial Training and Robustness for Multiple Perturbations

Adversarial Training and Robustness for Multiple Perturbations

Adversarial Training and Robustness for Multiple Perturbations

A <u>robustness tradeoff</u> is provably inherent in some classification tasks

Increased robustness to one type of noise ⇒ decreased robustness to another

Empirically validated on CIFAR10 & MNIST

A <u>robustness tradeoff</u> is provably inherent in some classification tasks

Increased robustness to one type of noise ⇒ decreased robustness to another

Empirically validated on CIFAR10 & MNIST

Adversarial Training and Robustness for Multiple Perturbations

A <u>robustness tradeoff</u> is provably inherent in some classification tasks

Increased robustness to one type of noise ⇒ decreased robustness to another

Empirically validated on CIFAR10 & MNIST

For
$$\ell_{\infty}$$
, ℓ_1 and ℓ_2 noise:
50% accuracy

Adversarial Training and Robustness for Multiple Perturbations

A <u>robustness tradeoff</u> is provably inherent in some classification tasks

Increased robustness to one type of noise ⇒ decreased robustness to another

Empirically validated on CIFAR10 & MNIST

For
$$\boldsymbol{\ell}_{\infty}$$
, $\boldsymbol{\ell}_1$ and $\boldsymbol{\ell}_2$ noise:

Adversarial Training and Robustness for Multiple Perturbations

What if we combine perturbations?

Adversarial Training and Robustness for Multiple Perturbations

What if we combine perturbations?

natural image

rotation

ℓ_{∞} noise $\frac{1}{2}$ rotation + $\frac{1}{2}$ ℓ_{∞} noise

Adversarial Training and Robustness for Multiple Perturbations

What if we combine perturbations?

Adversarial Training and Robustness for Multiple Perturbations

Conclusion

Adversarial training for multiple perturbation sets works, but...

- Significant loss in robustness
- Weak robustness to affine combinations of perturbations

Stanford University

ster

Conclusion

Adversarial training for multiple perturbation sets works, but...

- Significant loss in robustness
- Weak robustness to affine combinations of perturbations

Open questions:

- Train a single MNIST model with high robustness to any ℓ_p noise
- Better scaling of multi-perturbation adversarial training
- Which perturbations do we care about?

https://arxiv.org/abs/1904.13000

Adversarial Training and Robustness for Multiple Perturbations

Stanford University

oster