Online Learning via the Differential Privacy Lens

Jacob Abernethy Young Hun Jung Chansoo Lee Audra McMillan Ambuj Tewari @ Georgia Institute of Technology

- @ University of Michigan
- @ Google Brain
- @ Boston University
- @ University of Michigan

NeurIPS 2019

Online Learning via the Differential Privacy Lens

DP inspired stability is well-suited to analyzing OL algorithms

Adversarial Online Learning Problems

- A sequential game between *Learner* and *Adversary*
- Learner chooses its action $x_t \in \mathcal{X}$, which can be *random*
- Adversary chooses a loss function $\ell_t \in \mathcal{Y}$ (NOT random)
- Full Info.: the entire function ℓ_t is revealed to the learner

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Partial Info.: only the function value $\ell_t(y_t)$ is revealed

Adversarial Online Learning Problems

• The learner's goal is to minimize the *expected regret*:

$$\mathbb{E}[\operatorname{\mathsf{Regret}}_{\mathcal{T}}] = \mathbb{E}[\sum_{t=1}^{\mathcal{T}} \ell_t(x_t)] - \mathcal{L}_{\mathcal{T}}^{\star}, \text{ where } \mathcal{L}_{\mathcal{T}}^{\star} = \min_{x \in \mathcal{X}} \sum_{t=1}^{\mathcal{T}} \ell_t(x).$$

- *Zero-order* bound proves $\mathbb{E}[\operatorname{Regret}_T] = o(T)$
- *First-order* bound proves $\mathbb{E}[\operatorname{Regret}_{\mathcal{T}}] = o(L_{\mathcal{T}}^{\star})$
 - The first-order bound is more desirable if $L_T^{\star} = o(T)$
- OCO, OLO, expert problems, MABs, bandits with experts

э

Differential Privacy

Let ${\mathcal A}$ be a randomized algorithm that maps a data set S to a decision rule in ${\mathcal X}$

- A(S) will be available to users but NOT S itself
- We do *NOT* want the users to infer our data set S from $\mathcal{A}(S)$

• Suppose S and S' differ only by a single entry \Rightarrow We want $\mathcal{A}(S)$ and $\mathcal{A}(S')$ to be similar

Differential Privacy

 The δ-approximate max-divergence between two distributions *P* and *Q* is (sup takes over all measurable sets)

$$D^{\delta}_{\infty}(P,Q) = \sup_{P(B) > \delta} \log \frac{P(B) - \delta}{Q(B)}$$

• We say \mathcal{A} is (ϵ, δ) -DP if $D^{\delta}_{\infty}(\mathcal{A}(S), \mathcal{A}(S')) < \epsilon$

New Stability Notions

Main Observation

In online learning, Follow-The-Leader algorithm performs badly while F-T-Purturbed-L or F-T-Regularized-L do well.

Definition 1 (One-step differential stability)

For a divergence D, \mathcal{A} is called DiffStable(D) at level ϵ iff for any t and any $\ell_{1:t} \in \mathcal{Y}^t$, we have $D(\mathcal{A}(\ell_{1:t-1}), \mathcal{A}(\ell_{1:t})) \leq \epsilon$

Definition 2 (DiffStable, when losses are vectors)

For a norm $|| \cdot ||$, \mathcal{A} is called DiffStable $(D, || \cdot ||)$ at level ϵ iff for any t and any $\ell_{1:t} \in \mathcal{Y}^t$, we have $D(\mathcal{A}(\ell_{1:t-1}), \mathcal{A}(\ell_{1:t})) \leq \epsilon ||\ell_t||$ **Remark.** $\ell_{1:t-1}$ and $\ell_{1:t}$ only differ by one item!

Key Lemma

Suppose loss functions always belong to [0, B] for some B and A is DiffStable (D_{∞}^{δ}) at level $\epsilon \leq 1$. Then the regret of A satisfies

 $\mathbb{E}[\operatorname{Regret}(\mathcal{A})_{\mathcal{T}}] \leq 2\epsilon L_{\mathcal{T}}^* + 3\mathbb{E}[\operatorname{Regret}(\mathcal{A}^+)_{\mathcal{T}}] + \delta B\mathcal{T}.$

- We can adopt DiffStable algorithms from DP community
- $\mathbb{E}[\operatorname{Regret}(\mathcal{A}^+)_{\mathcal{T}}]$ is usually small (independent of \mathcal{T})
- δ can be set to be as small as 1/BT

Online Convex Optimization

Algorithm 1 Online convex optimization using Obj-Pert

- 1: Given Obj-Pert solves the convex optimization while preserving DP
- 2: for $t = 1, \cdots, T$ do
- 3: Play $x_t = \text{Obj-Pert}(\ell_{1:t-1}; \epsilon, \delta, \beta, \gamma)$

4: end for

- Algorithm 1 is automatically DiffStable due to Obj-Pert (object perturbation) algorithm from DP literature
- When applying the Key Lemma, $\mathbb{E}[\operatorname{Regret}(\mathcal{A}^+)_T]$ scales as $\frac{1}{\epsilon}$

 $\mathbb{E}[\operatorname{Regret}(\mathcal{A})_{\mathcal{T}}] \leq 2\epsilon L_{\mathcal{T}}^* + 3\mathbb{E}[\operatorname{Regret}(\mathcal{A}^+)_{\mathcal{T}}] + \delta BT$

• Tuning ϵ and setting $\delta=1/BT$, we get the first-order regret bound of $O(\sqrt{L_T^\star})$

Other Applications

- OLO/OCO, Expert Learning, MABs, Bandits with Experts
- Zero-order and First-order regret bounds
- Provide a unifying framework to analyze OL algorithms
- Come to Poster #53 @ East Exhibition Hall B + C (that starts NOW!) for more details

Thanks!

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()