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Online Learning via the Differential Privacy Lens

DP inspired stability is well-suited to analyzing OL algorithms



Adversarial Online Learning Problems

• A sequential game between Learner and Adversary

• Learner chooses its action xt ∈ X , which can be random

• Adversary chooses a loss function `t ∈ Y (NOT random)

• Full Info.: the entire function `t is revealed to the learner

• Partial Info.: only the function value `t(yt) is revealed



Adversarial Online Learning Problems

• The learner’s goal is to minimize the expected regret:

E[RegretT ] = E[
T∑
t=1

`t(xt)]− L?T , where L?T = min
x∈X

T∑
t=1

`t(x).

• Zero-order bound proves E[RegretT ] = o(T )
• First-order bound proves E[RegretT ] = o(L?T )

• The first-order bound is more desirable if L?T = o(T )

• OCO, OLO, expert problems, MABs, bandits with experts



Differential Privacy

Let A be a randomized algorithm that maps a data set S to a
decision rule in X

• A(S) will be available to users but NOT S itself

• We do NOT want the users to infer our data set S from A(S)

• Suppose S and S ′ differ only by a single entry
⇒ We want A(S) and A(S ′) to be similar



Differential Privacy

• The δ-approximate max-divergence between two distributions
P and Q is (sup takes over all measurable sets)

Dδ
∞(P,Q) = sup

P(B)>δ
log

P(B)− δ
Q(B)

• We say A is (ε, δ)-DP if Dδ
∞(A(S),A(S ′)) < ε



New Stability Notions

Main Observation
In online learning, Follow-The-Leader algorithm performs badly
while F-T-Purturbed-L or F-T-Regularized-L do well.

Definition 1 (One-step differential stability)

For a divergence D, A is called DiffStable(D) at level ε iff for any
t and any `1:t ∈ Yt , we have D(A(`1:t−1),A(`1:t)) ≤ ε

Definition 2 (DiffStable, when losses are vectors)

For a norm || · ||, A is called DiffStable(D,|| · ||) at level ε iff for
any t and any `1:t ∈ Yt , we have D(A(`1:t−1),A(`1:t)) ≤ ε||`t ||
Remark. `1:t−1 and `1:t only differ by one item!



Key Lemma

Suppose loss functions always belong to [0,B] for some B and A is
DiffStable(Dδ

∞) at level ε ≤ 1. Then the regret of A satisfies

E[Regret(A)T ] ≤ 2εL∗T + 3E[Regret(A+)T ] + δBT .

• We can adopt DiffStable algorithms from DP community

• E[Regret(A+)T ] is usually small (independent of T )

• δ can be set to be as small as 1/BT



Online Convex Optimization

Algorithm 1 Online convex optimization using Obj-Pert
1: Given Obj-Pert solves the convex optimization while preserving DP
2: for t = 1, · · · ,T do
3: Play xt = Obj-Pert(`1:t−1; ε, δ, β, γ)

4: end for

• Algorithm 1 is automatically DiffStable due to Obj-Pert
(object perturbation) algorithm from DP literature

• When applying the Key Lemma, E[Regret(A+)T ] scales as 1
ε

E[Regret(A)T ] ≤ 2εL∗T + 3E[Regret(A+)T ] + δBT

• Tuning ε and setting δ = 1/BT , we get the first-order regret
bound of O(

√
L?T )



Other Applications

• OLO/OCO, Expert Learning, MABs, Bandits with Experts

• Zero-order and First-order regret bounds

• Provide a unifying framework to analyze OL algorithms

• Come to Poster #53 @ East Exhibition Hall B + C
(that starts NOW!) for more details

Thanks!


