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Background

Problem: Want to solve optimization problem of composite structure:

min
w∈Rd

φ(w) = Ez [f (w, z)] + r(w), (1)

where f : Rd ×Z 7→ R+(loss), r : Rd 7→ R+ (regularizer) are convex.

Data: z = {zt} drawn i.i.d. from a measure defined over Z = X × Y

Instantiations: SVMs, Logistic Regression, Lasso, Ridge Regression, etc.

Optimal model: w∗ = argminw∈Rd φ(w)



Stochastic Composite Mirror Descent

A strongly convex mirror map Ψ : Rd 7→ R to induce a Bregman distance

DΨ(w, w̃) := Ψ(w)− [Ψ(w̃) + 〈w − w̃,∇Ψ(w̃)〉] ≥ σ

2
‖w − w̃‖2

Idea: separate data-fitting term and regularizer

wt+1 =arg min
w∈Rd

〈w −wt , f
′(wt , zt)〉︸ ︷︷ ︸

first-order approximation of f (w, zt) at wt

+r(w) + η−1
t DΨ(w,wt)︸ ︷︷ ︸

stabilizer

(2)

A framework covering many algorithms: (Nemirovsky and Yudin, 1983; Beck and Teboulle, 2003;

Zinkevich, 2003; Zhang, 2004; Bach and Moulines, 2013; Bottou et al., 2018; Duchi et al., 2010; Shalev-Shwartz et al., 2011;

Hazan and Kale, 2014)

SGD

Stochastic Proximal Gradient Descent

Stochastic Mirror Descent

keep r intact and approximate f by first-order approximation



Existing Work

Problem: How to identify a model from sequence {wt}Tt=1

LAST: output the last single iterate (Shamir and Zhang, 2013)

UNI-AVE: average all iterates with uniform weights

WEI-AVE: weighted average with weight t + 1 for wt (Lacoste-Julien et al., 2012)

SUFFIX: uniform average of the last half of SGD iterates (Rakhlin et al., 2012)

RAND: a random iterate drawn from {wt}Tt=1

Problems:

either suboptimal in the sense of logarithmic factors

or requires averaging of iterates (sparsity destroyed)

Algorithm with optimal rate, sparsity and good practical behavior?



Motivation and Idea

Key inequality measuring one-step progress:

E[φ(wt)−φ(w)] ≤ η−1
t E[DΨ(w,wt)− DΨ(w,wt+1)] + ηtC . (3)

If set w = w∗ and show E[DΨ(w∗,wt)− DΨ(w∗,wt+1)] = O(η2
t ), then

optimal convergence E[φ(wt)]− φ(w∗) = O(ηt)

since ηt = 1/
√
t for convex and ηt = 1/t for strongly-convex setting.

By non-negativity of Bregman distance, we find T ∗ ∈ {T , . . . , 2T − 1} with

DΨ(w∗,wT∗)− DΨ(w∗,wT∗+1) ≤ T−1 DΨ(w∗,wT )︸ ︷︷ ︸
=O(Tη2

T )

. (4)

w∗ replaced by a surrogate w̄T with E[φ(w̄T )]− φ(w∗) = O(ηT )



Algorithm

SCMDI: Stochastic Composite Mirror Descent with Individual Iterates

Algorithm 1: SCMDI

Input: {ηt}t ,w1 and T .
1 for t = 1, 2 to T − 1 do
2 calculate wt+1 by (2)

3 set w̄T as an average of iterates
4 for t = T ,T + 1 to 2T − 1 do
5 calculate wt+1 by (2)
6 4← DΨ(w̄T ,wt)−DΨ(w̄T ,wt+1)
7 if 4 ≤ T−1DΨ(w̄T ,wT ) then
8 T ∗ ← t, wT∗ ← wt

OCMDI: Online Composite Mirror Descent with Individual Iterates

I update average at 2t-th iteration, t = 1, 2, . . .
I no information of T required



Theory

Assumptions 1: the existence of A and B > 0 such that

‖f ′(w, z)‖2
∗ ≤ Af (w, z) + B and ‖r ′(w)‖2

∗ ≤ Ar(w) + B.

Convex case: If Assumption 1 and ηt � 1/
√
t, then

E[φ(wT∗)]− φ(w∗) = O(T−
1
2 ).

Strongly convex case: If Assumption 1 and ηt � 1/t, then

E[φ(wT∗)]− φ(w∗) = O(T−1).



Tomography Reconstruction

Objective function: φ(w) = 1
n‖Aw − y‖2

2

I A ∈ Rn×d is a CT-measurement matrix
I y ∈ Rn is a noisy measurement vector

w∗ is a sparse image.

SCMD with (randomized sparse Kaczmarz algorithm)

I Ψ(w) = λ‖w‖1 + 1
2‖w‖

2
2

I f (w, z) = 1
2 (〈w, x〉 − y)2

I r(w) = 0

(a): objective function value (b): number of non-zero components



Welcome to East Exhibition Hall B + C #164 for more
details

Thank You!
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