Model Selection for Contextual Bandits

Dylan Foster Akshay Krishnamurthy Haipeng Luo

Poster #5, Wednesday @ 5:00

Model Selection in Statistical Learning

Setup

- Data $\{(x_i, y_i)\}_{i=1}^n \sim D$
- Nested function classes $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots \subset \mathcal{F}_M$
- (Assume Bayes optimal predictor $f^* \in \mathcal{F}_{m^*}$)

Model Selection in Statistical Learning

Setup

- Data $\{(x_i, y_i)\}_{i=1}^n \sim D$
- Nested function classes $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots \subset \mathcal{F}_M$
- (Assume Bayes optimal predictor $f^* \in \mathcal{F}_{m^*}$)

Model selection guarantee: Learner \hat{f}_n satisfies

$$R(\hat{f}_n) \le R(f^*) + \sqrt{\frac{\operatorname{comp}(\mathcal{F}_{m^*})}{n} \cdot \log(m^*/\delta)}.$$

- Adapts to complexity of Bayes predictor *f**!
- Algorithmic principle: Structural risk minimization [Vapnik'92].

Model Selection in Statistical Learning

Setup

- Data $\{(x_i, y_i)\}_{i=1}^n \sim D$
- Nested function classes $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots \subset \mathcal{F}_M$
- (Assume Bayes optimal predictor $f^* \in \mathcal{F}_{m^*}$)

Model selection guarantee: Learner \hat{f}_n satisfies

$$R(\hat{f}_n) \le R(f^*) + \sqrt{\frac{\operatorname{comp}(\mathcal{F}_{m^*})}{n} \cdot \log(m^*/\delta)}.$$

- Adapts to complexity of Bayes predictor *f**!
- Algorithmic principle: Structural risk minimization [Vapnik'92].

Goal: Achieve similar guarantee in online learning with partial information (contextual bandits).

• Statistical learning: Structural risk minimization.

- Statistical learning: Structural risk minimization.
- **Online learning**: Exponential weights w/ prior, LR tuning.

- Statistical learning: Structural risk minimization.
- **Online learning**: Exponential weights w/ prior, LR tuning.
- Contextual bandits:
 - No positive results known:
 - Even for specific function classes.
 - Even if we're fine with, e.g., $T^{2/3}$ -type rates.
 - Standard algorithmic approaches fail (cf. paper for details).

- Statistical learning: Structural risk minimization.
- **Online learning**: Exponential weights w/ prior, LR tuning.
- Contextual bandits:
 - No positive results known:
 - Even for specific function classes.
 - Even if we're fine with, e.g., $T^{2/3}$ -type rates.
 - Standard algorithmic approaches fail (cf. paper for details).

Our result

Model selection for linear contextual bandits.

(Linear) Contextual Bandits

For t = 1, ..., T:

- 1. Observe $x_t \in \mathcal{X}$
- **2.** Take action $a_t \in [K]$
- 3. Incur loss $\ell_t(a_t) \in [0, 1]$

$$\mathsf{Regret}(T) = \sum_{t=1}^{T} \ell_t(a_t) - \sum_{t=1}^{T} \ell_t(\pi^*(x_t))$$

(Linear) Contextual Bandits

For t = 1, ..., T:

- 1. Observe $x_t \in \mathcal{X}$
- 2. Take action $a_t \in [K]$
- 3. Incur loss $\ell_t(a_t) \in [0, 1]$

Regret(T) =
$$\sum_{t=1}^{T} \ell_t(a_t) - \sum_{t=1}^{T} \ell_t(\pi^*(x_t))$$

Linear setup:

Feature maps: $\{\phi_m\}_{m \in [M]}, \phi_m(x, a) \in \mathbb{R}^{d_m}$.

Realizability: $\exists \theta^* \in \mathbb{R}^{d_{m^*}}$, s.t. $\mathbb{E}[\ell(a) \mid x] = \langle \theta^*, \phi_{m^*}(x, a) \rangle$. (Optimal policy is $\pi^*(x_t) = \arg \max_a \langle \theta^*, \phi_{m^*}(x, a) \rangle$.)

(Linear) Contextual Bandits

For t = 1, ..., T:

- 1. Observe $x_t \in \mathcal{X}$
- **2**. Take action $a_t \in [K]$
- 3. Incur loss $\ell_t(a_t) \in [0, 1]$

$$\mathsf{Regret}(T) = \sum_{t=1}^{T} \ell_t(a_t) - \sum_{t=1}^{T} \ell_t(\pi^*(x_t))$$

Linear setup:

Feature maps: $\{\phi_m\}_{m \in [M]}, \phi_m(x, a) \in \mathbb{R}^{d_m}$.

Realizability: $\exists \theta^* \in \mathbb{R}^{d_{m^*}}$, s.t. $\mathbb{E}[\ell(a) \mid x] = \langle \theta^*, \phi_{m^*}(x, a) \rangle$. (Optimal policy is $\pi^*(x_t) = \arg \max_a \langle \theta^*, \phi_{m^*}(x, a) \rangle$.)

With m^* known, can get $\tilde{O}(\sqrt{d_{m^*}T\log(K)})$ regret. [ChuLiReyzinSchapire'11]

Our Result

Main Theorem

```
Without knowing m^*, we get:
```

Regret
$$\leq \tilde{O}(T^{2/3}(Kd_{m^{\star}})^{1/3}).$$

We can also achieve:

Regret
$$\leq \tilde{O}(\sqrt{KTd_{m^{\star}}} + K^{1/4}T^{3/4}).$$

*Stochastic setting, some technical assumptions required (see paper).

Model selection possible whenever problem is learnable!

Estimate square loss gap between two classes $(d_i < d_j)$

$$\mathcal{E}_{i,j} \coloneqq \mathbb{E}_{x,a} \left(\left\langle \theta_i^{\star}, \phi_i(x,a) \right\rangle - \left\langle \theta_j^{\star}, \phi_j(x,a) \right\rangle \right)^2$$

.

Estimate square loss gap between two classes ($d_i < d_j$)

$$\mathcal{E}_{i,j} \coloneqq \mathbb{E}_{x,a} \left(\left\langle \theta_i^{\star}, \phi_i(x,a) \right\rangle - \left\langle \theta_j^{\star}, \phi_j(x,a) \right\rangle \right)^2$$

.

Plug-in estimator has error d_j/n .

Estimate square loss gap between two classes $(d_i < d_j)$

$$\mathcal{E}_{i,j} \coloneqq \mathbb{E}_{x,a} \left(\left\langle \theta_i^{\star}, \phi_i(x,a) \right\rangle - \left\langle \theta_j^{\star}, \phi_j(x,a) \right\rangle \right)^2$$

Plug-in estimator has error d_j/n .

Lemma: New estimator with error $\sqrt{d_j}/n + d_j/m$.

- *n* exploration samples, *m* unlabeled samples.
- Refines and generalizes [Dicker'14,KongValiant'18].

Estimate square loss gap between two classes $(d_i < d_j)$

$$\mathcal{E}_{i,j} \coloneqq \mathbb{E}_{x,a} \left(\left\langle \theta_i^{\star}, \phi_i(x,a) \right\rangle - \left\langle \theta_j^{\star}, \phi_j(x,a) \right\rangle \right)^2$$

Plug-in estimator has error d_j/n .

Lemma: New estimator with error $\sqrt{d_j}/n + d_j/m$.

- *n* exploration samples, *m* unlabeled samples.
- Refines and generalizes [Dicker'14,KongValiant'18].

Algorithm:

Run CB alg with d_i , mix in exploration, test if $\mathcal{E}_{i,j} > 0$, switch to d_j if so.

Estimate square loss gap between two classes $(d_i < d_j)$

$$\mathcal{E}_{i,j} \coloneqq \mathbb{E}_{x,a} \left(\left\langle \theta_i^{\star}, \phi_i(x,a) \right\rangle - \left\langle \theta_j^{\star}, \phi_j(x,a) \right\rangle \right)^2$$

Plug-in estimator has error d_j/n .

Lemma: New estimator with error $\sqrt{d_j}/n + d_j/m$.

- *n* exploration samples, *m* unlabeled samples.
- Refines and generalizes [Dicker'14,KongValiant'18].

Algorithm:

Run CB alg with d_i , mix in exploration, test if $\mathcal{E}_{i,j} > 0$, switch to d_j if so.

Note: Cannot run LinUCB, since d_i might not be realizable.

Summary

- First model selection guarantee for contextual bandits
- Key technique: fast rates for estimating best-in-class loss.
- Open problems:
 - Can we achieve similar model selection guarantees for general policy classes?
 - Can we achieve $\sqrt{d_{m^*}T}$ for all d_{m^*} ?

Poster #5, Wednesday @ 5:00 arXiv:1906.00531