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When bandit algorithms are used for recommendation, we model
each item (or group of items) as an arm.

I In the classical formulation, a key assumption is that the
reward of each arm is stationary

I Good bandit algorithms learn to play the best arm constantly.

I However, in many settings, playing a single arm isn’t optimal
and we want to wait before playing the same arm.

We tackle this problem in Recovering Bandits.
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Recovering Bandits

We assume that the reward is a function of the time since the arm
was last played.
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Let Zj ,t be the time since arm j
was last played. Then, the
expected reward is fj(Zj ,t)

and we observe,

Yj ,t = fj(Zj ,t) + εj ,t .

We assume that these functions can be modeled by a Gaussian
Process.

This problem is harder than the stationary bandits problem.
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d-step lookahead
In recovering bandits, selecting the arm with highest current
reward is not optimal.

f1(Z1,t)

f2(Z2,t)

f1(Z1,t + 1)

f2(Z2,t + 1)

Hence, we look for sequences of arms to maximize the reward over
d plays. The corresponding regret is the d-step lookahead regret.

The optimal value of d is T . However, this is infeasible.

Proposition: For large d , the best d-step lookahead policy is near
optimal.
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d-step lookahead
In recovering bandits, selecting the arm with highest current
reward is not optimal.

f1(Z1,t)

f2(Z2,t)

f1(Z1,t + 1)

f2(Z2,t + 1)

Hence, we look for sequences of arms to maximize the reward over
d plays. The corresponding regret is the d-step lookahead regret.

The optimal value of d is T . However, this is infeasible.

Proposition: For large d , the best d-step lookahead policy is near
optimal.

4 / 6



Recovering Bandits Pike-Burke & Grünewälder Poster #9
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Algorithms

We present modifications of UCB and Thompson sampling that
exploit properties of GPs to select good sequences of d arms.

Theorem: The Bayesian d-step lookahead regret of both
algorithms is Õ(

√
dKT ).

Thus, we only suffer an extra
√
d regret compared to the easier

stationary bandit problem.

Improving computational efficiency

We also provide an adaptation based on optimistic planning that is
guaranteed to improve the computational complexity.
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Experimental Results

Our algorithms learn to play arms when their rewards are highest.
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We also show experimentally that:

I our algorithms outperform other methods

I the optimistic planning procedure is more computationally
efficient.
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