Are sample means in multi-armed bandits positively or negatively biased?

Jaehyeok Shin¹, Aaditya Ramdas^{1,2} and Alessandro Rinaldo¹ Dept. of Statistics and Data Science¹, Machine Learning Dept.², CMU

Poster #12 @ Hall B + C

Stochastic multi-armed bandit

"Random reward"

Time

t = 1

Time

• • •

t = 1

 Y_1

Time

t = 1

• • •

Time

 Y_1

t = 1

t = 2

- •
- •

Stopping time

Collected data can be used to identify an interesting arm...

"Interesting!"

...and data can be used to estimate the mean.

Sample mean of chosen arm κ

Q. Bias of sample mean?

$$\mathbb{E}\left[\widehat{\mu}_{\kappa}(\mathcal{T}) - \mu_{\kappa}\right] \leq \mathbf{or} \geq 0?$$

<u>Nie et al. 2018</u>

: Sample mean is negatively biased.

$$\mathbb{E}\left[\widehat{\mu}_{k}(t) - \mu_{k}\right] \leq 0$$

<u>Nie et al. 2018</u>

: Sample mean is negatively biased.

Nie et al. 2018

: Sample mean is negatively biased.

This work

: Sample mean of chosen arm at stopping time

$$\mathbb{E}\left[\widehat{\mu}_{\kappa}(\mathcal{T}) - \mu_{\kappa}\right]$$

$$\swarrow$$
Chosen Arm Stopping Time

: Sample mean of chosen arm at stopping time is ...

$$\mathbb{E}\left[\widehat{\mu}_{\kappa}(\mathcal{T}) - \mu_{\kappa}\right]$$

: Sample mean of chosen arm at stopping time is ...

$$\mathbb{E}\left[\widehat{\mu}_{\kappa}(\mathcal{T})-\mu_{\kappa}\right]$$

(a) **negatively** biased under 'optimistic sampling'.

: Sample mean of chosen arm at stopping time is ...

$$\mathbb{E}\left[\widehat{\mu}_{\kappa}(\mathcal{T})-\mu_{\kappa}\right]$$

(a) negatively biased under 'optimistic sampling'.

(b) positively biased under 'optimistic stopping'.

: Sample mean of chosen arm at stopping time is ...

$$\mathbb{E}\left[\widehat{\mu}_{\kappa}(\mathcal{T})-\mu_{\kappa}\right]$$

(a) negatively biased under 'optimistic sampling'.

(b) positively biased under 'optimistic stopping'.

(c) positively biased under 'optimistic choosing'.

Theorem [Informal]

Sample from arm k \longrightarrow $\frac{1(\kappa = k)}{N_k(\mathcal{T})}$

Theorem [Informal]

Theorem [Informal]

Theorem [Informal]

Agnostic to algorithm

Theorem [Informal]

Agnostic to algorithm

Includes Nie et al. 2018 as a special case

Theorem [Informal]

Agnostic to algorithm

Includes Nie et al. 2018 as a special case

Positive bias

under best arm identification, sequential testing

Poster #12 @ Hall B + C

Are sample means in multi-armed bandits positively or negatively biased?

Jaehyeok Shin, Aaditya Ramdas and Alessandro Rinaldo

Carnegie Mellon University