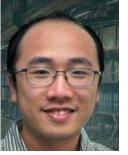
Complexity of Highly Parallel Non-Smooth Convex Optimization

NeurIPS 2019 Spotlight joint work with

Sébastien Bubeck

Qijia Jiang

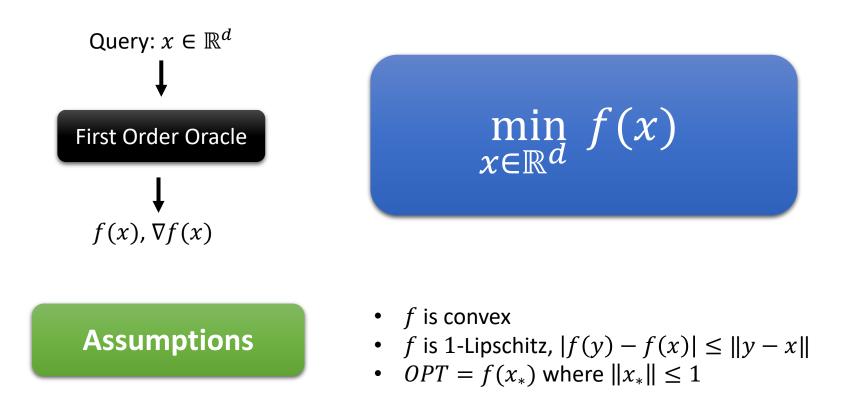


Yin Tat Lee

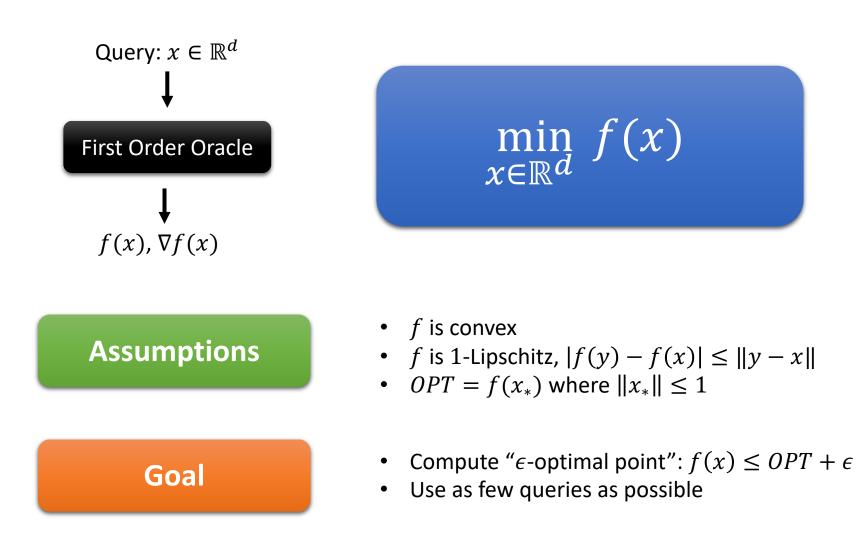
Yuanzhi Li

Aaron Sidford

Non-smooth Convex Optimization

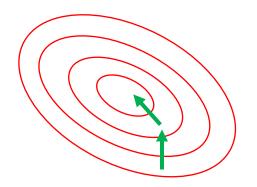


Non-smooth Convex Optimization



(Sub)-Gradient Descent

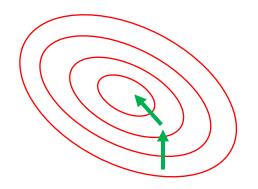
- $x_{k+1} = x_k \eta \nabla f(x_k)$
- Output average $\bar{x}_k = \frac{1}{k} \sum x_k$
- $O(1/\epsilon^2)$ queries suffice



- **Goal**: ϵ -optimal point for convex f
- Oracle: first order
- Assumptions: 1-Lipschitz, $||x_*||_2 \le 1$

(Sub)-Gradient Descent

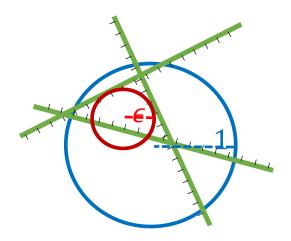
- $x_{k+1} = x_k \eta \nabla f(x_k)$
- Output average $\bar{x}_k = \frac{1}{k} \sum x_k$
- $O(1/\epsilon^2)$ queries suffice



- **Goal**: ϵ -optimal point for convex f
- Oracle: first order
- Assumptions: 1-Lipschitz, $||x_*||_2 \le 1$

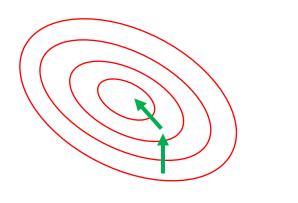
Cutting Plane Methods

- Center of gravity / high dimensional binary search
- $O(d \log(1/\epsilon))$ queries suffice



(Sub)-Gradient Descent

- $x_{k+1} = x_k \eta \nabla f(x_k)$
- Output average $\bar{x}_k = \frac{1}{k} \sum x_k$
- $O(1/\epsilon^2)$ queries suffice

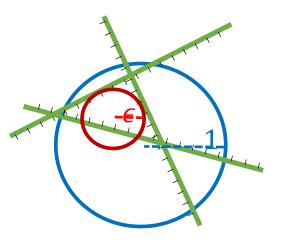


Optimal?

- **Goal**: ϵ -optimal point for convex f
- Oracle: first order
- Assumptions: 1-Lipschitz, $||x_*||_2 \le 1$

Cutting Plane Methods

- Center of gravity / high dimensional binary search
- $O(d \log(1/\epsilon))$ queries suffice



(Sub)-Gradient Descent

- $x_{k+1} = x_k \eta \nabla f(x_k)$
- Output average $\bar{x}_k = \frac{1}{k} \sum x_k$
- $O(1/\epsilon^2)$ queries suffice

Lower Bound

Unimprovable when

$$\epsilon = \omega \left(1/\sqrt{d} \right)$$

- **Goal**: ϵ -optimal point for convex f
- Oracle: first order
- Assumptions: 1-Lipschitz, $||x_*||_2 \le 1$

Cutting Plane Methods

- Center of gravity / high dimensional binary search
- $O(d \log(1/\epsilon))$ queries suffice

Lower Bound

Unimprovable when $\epsilon = 0(1/\sqrt{d})$

Parallelizable?

- **Goal**: ϵ -optimal point for convex f
- Oracle: first order
- Assumptions: 1-Lipschitz, $||x_*||_2 \le 1$

(Sub)-Gradient Descent

- $x_{k+1} = x_k \eta \nabla f(x_k)$
- Output average $\bar{x}_k = \frac{1}{k} \sum x_k$
- $O(1/\epsilon^2)$ queries suffice

Lower Bound

Unimprovable when

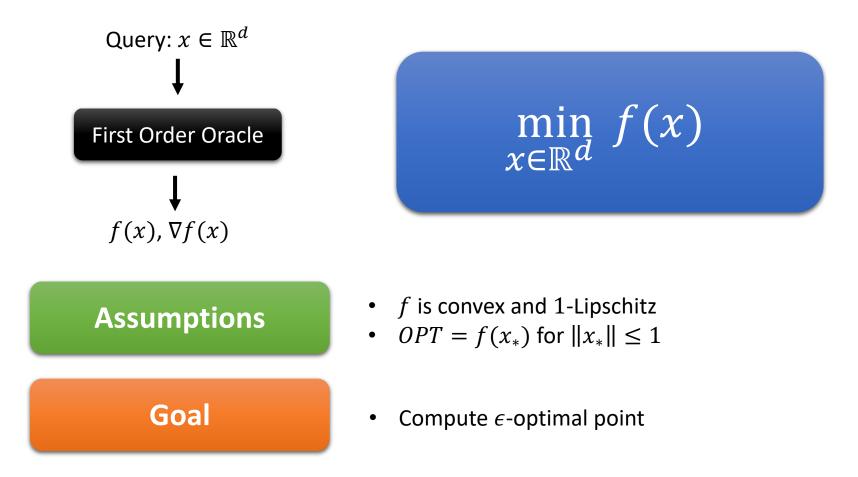
$$\epsilon = \omega \left(1 / \sqrt{d} \right)$$

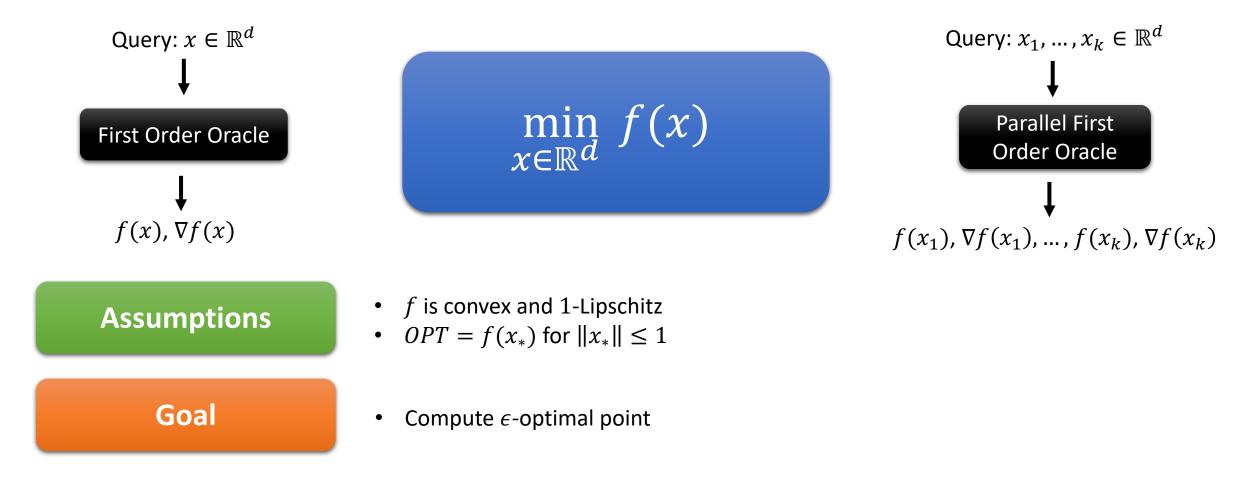
Cutting Plane Methods

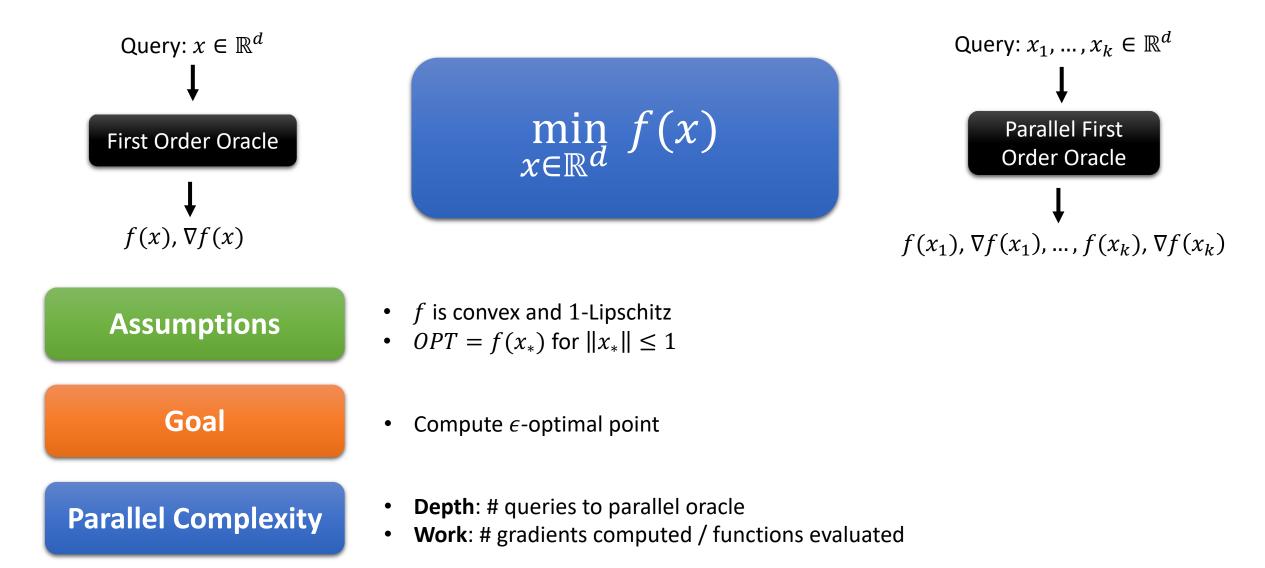
- Center of gravity / high dimensional binary search
- $O(d \log(1/\epsilon))$ queries suffice

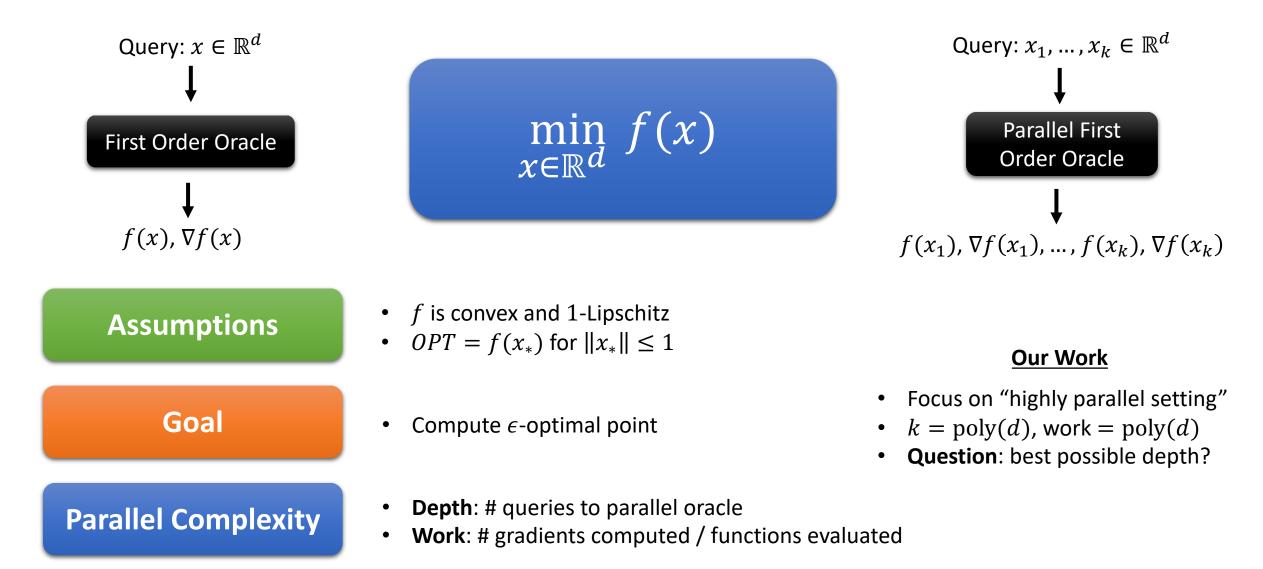
Lower Bound

Unimprovable when $\epsilon = 0(1/\sqrt{d})$









(Sub)-Gradient Descent

Depth $O(1/\epsilon^2)$

- **Goal**: ϵ -optimal point for convex f
- Oracle: highly parallel first order
- Assumptions: 1-Lipschitz, $||x_*||_2 \le 1$

<u>Cutting Plane Methods</u> Depth $O(d \log(1/\epsilon))$

(Sub)-Gradient Descent

Depth $O(1/\epsilon^2)$

```
[DBW12]
Depth O(d^{1/4}/\epsilon)
f
Improves when
\epsilon \in [d^{-3/4}, d^{-1/4}]
depth \in [\sqrt{d}, d]
```

Accelerated stochastic method

- **Goal**: ϵ -optimal point for convex f
- Oracle: highly parallel first order
- Assumptions: 1-Lipschitz, $||x_*||_2 \le 1$

Cutting Plane Methods Depth $O(d \log(1/\epsilon))$

(Sub)-Gradient Descent Depth $O(1/\epsilon^2)$ **1** Lower Bound[N94,BS18]

No randomized algorithm improves when $\epsilon = \widetilde{\omega}(d^{-1/6})$, depth = $\widetilde{O}(d^{1/3})$

[DBW12] Depth O($d^{1/4}/\epsilon$) Improves when $\epsilon \in [d^{-3/4}, d^{-1/4}]$ depth $\in [\sqrt{d}, d]$

Accelerated stochastic method

- **Goal**: ϵ -optimal point for convex f
- Oracle: highly parallel first order
- Assumptions: 1-Lipschitz, $||x_*||_2 \le 1$

<u>Cutting Plane Methods</u> Depth $O(d \log(1/\epsilon))$

(Sub)-Gradient Descent Depth $O(1/\epsilon^2)$ **1** Lower Bound[N94,BS18] No randomized algorithm improves

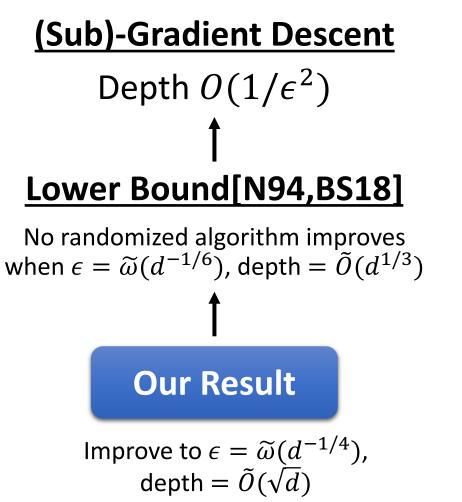
No randomized algorithm improves when $\epsilon = \widetilde{\omega}(d^{-1/6})$, depth $= \widetilde{O}(d^{1/3})$ **Our Result** Improve to $\epsilon = \widetilde{\omega}(d^{-1/4})$, depth $= \widetilde{O}(\sqrt{d})$

[DBW12]
Depth O(
$$d^{1/4}/\epsilon$$
)
Improves when
 $\epsilon \in [d^{-3/4}, d^{-1/4}]$
depth $\in [\sqrt{d}, d]$

Accelerated stochastic method

- **Goal**: ϵ -optimal point for convex f
- Oracle: highly parallel first order
- Assumptions: 1-Lipschitz, $||x_*||_2 \le 1$

Cutting Plane Methods Depth $O(d \log(1/\epsilon))$



Accelerated stochastic method [DBW12] Depth O($d^{1/4}/\epsilon$) Improves when $\epsilon \in [d^{-3/4}, d^{-1/4}]$ depth $\in [\sqrt{d}, d]$ Improves when $\epsilon \in [d^{-1}, d^{-1/4}]$ depth $\in [\sqrt{d}, d]$

- **Goal**: ϵ -optimal point for convex f
- Oracle: highly parallel first order
- Assumptions: 1-Lipschitz, $||x_*||_2 \le 1$

<u>Cutting Plane Methods</u> Depth $O(d \log(1/\epsilon))$

High-order accelerated stochastic method

Our Result

Depth $\widetilde{0}(d^{1/3}/\epsilon^{2/3})$

Key Takeaways

- **Goal**: ϵ -optimal point for convex f
- Oracle: highly parallel first order
- Assumptions: 1-Lipschitz, $||x_*||_2 \le 1$

Lower Bound

- Gradient descent is highly-parallel optimal up to depth $\tilde{O}(\sqrt{d})$
- Previous bound was $ilde{O}(d^{1/3})$ and ours is nearly optimal

Upper Bound

- Can improve on cutting plane whenever $\epsilon = o(d^{-1})$
- Previous bound: $\epsilon = o(d^{-3/4})$

How?

Lower Bound

- Start with [N94,BS18] instance
- Control queries of "large" norm vectors from leaking information
- Build a "wall" to shield information in lower bound from such queries

How?

Lower Bound

- Start with [N94,BS18] instance
- Control queries of "large" norm vectors from leaking information
- Build a "wall" to shield information in lower bound from such queries

Upper Bound

- Minimize convolution of *f* with Gaussian as in [DBW12]
- Apply high-order acceleration [GDGVSUJWZBJLLS19] using that can build Taylor approximation in depth 1
- Improve by broader acceleration framework and better local model than Taylor approximation

How?

Lower Bound

- Start with [N94,BS18] instance
- Control queries of "large" norm vectors from leaking information
- Build a "wall" to shield information in lower bound from such queries

<u>Takeaway</u>

Shielding / wall building

Upper Bound

- Minimize convolution of *f* with Gaussian as in [DBW12]
- Apply high-order acceleration [GDGVSUJWZBJLLS19] using that can build Taylor approximation in depth 1
- Improve by broader acceleration framework and better local model than Taylor approximation

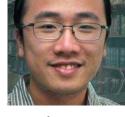
<u>Takeaway</u>

- General higher-order acceleration
- Stochastic approximation

Thank you

Sébastien Bubeck

Qijia Jiang



Yin Tat Lee

Yuanzhi Li

Aaron Sidford

Questions?

- poster: 5:30PM 7:30PM @ East Exhibition Hall B + C #107
- arXiv: 1906.10655
- email: sidford@stanford.edu