
Fast and Provable ADMM for learning with Generative Priors

Fabian Latorre
https://lions.epfl.ch

Laboratory for Information and Inference Systems (LIONS)
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Classical Signal Recovery
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Figure: Recovering a signal with convex optimization and a sparsity prior
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Leveraging GANs for Signal Recovery
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Figure: Recovering a signal with nonconvex optimization and a generative prior.
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Optimization Template

min
w,z

L(w) +R(w) +H(z) subject to w = G(z) (1)

• L is convex and smooth

• R,H convex, possibly non-smooth but proximal friendly.

• G differentiable generative model
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Decoupling via alternating minimization / penalty methods

Definition (Augmented Lagrangian)

Let ρ > 0

Lρ(w, z, λ) := L(w) + 〈w −G(z), λ〉+ ρ

2‖w −G(z)‖2 (2)

Our problem (1) is equivalent to

min
w,z

max
λ
Lρ(w, z, λ) +R(w) +H(z) (3)
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Iterates of Linearized ADMM

zt+1 ← PβH(zt − β∇zLρ(wt, zt, λt))
wt+1 ← PαR(wt − α∇wLρ(wt, zt+1, λt))
λt+1 ← λt + σt+1 · (wt+1 −G(zt+1))

PA is the proximal mapping of A.
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Example: nonsmooth projections

`∞ projection

min
w,z
‖w − w\‖∞ subject to w = G(z) (4)

L(w) = H(z) = 0, R(w) = ‖w − w\‖∞. Proximal mapping is efficient.

Figure 1: Reconstruction error and measurement error vs time. MNIST (left) and CelebA (right)
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Figure 2: Test error on denoised adversarial ex-
amples vs computation time.

Figure 3: `1 reconstruction error per iteration for
ADAM, GD, and EADMM.

we choose a starting iterate (random z0 and w0 = G(z0)) and initial dual variable �0 = 0 (for GD we
choose the same z0 as initial iterate).. We carefully track the objective function value vs. computation
time for a fair comparison.

Compressive sensing The exact minimization step of EADMM involves the solution of a system
of linear equations in each iteration. Performing Singular Value Decomposition (SVD) once on the
measurement matrix A, and storing its components in memory, allows us to solve such linear systems
with a very low per-iteration complexity (see Supplementary H.3). We plot the objective function
value as well as the reconstruction error with 50% relative measurements in Figure 1(average over 20
images (MNIST) and 10 images (CelebA)).

Adversarial Denoising with `1-norm Projection onto the range of a deep-net prior has been
considered by Samangouei et al. [2018], Ilyas et al. [2017] as a defense mechanism against adversarial
examples [Szegedy et al., 2013]. In their settings, samples are denoised with a generative prior,
before being fed to a classifier. Even though the adversarial noise introduced is typically bounded in
`1-norm, the projection is done in `2-norm. Such projection corresponds to F (w, z) = kw � w\k2
in (1). We instead propose to project using the `1-norm that bounds the adversarial perturbation. To
this end we let F (w, z) = �kw � w\k22 + kw � w\k1 in the template (1), for some small value of
�. The proximal of the `1 norm is efficiently computable [Duchi et al., 2008], allowing us to split
F (w, z) in its components L(w) = �kw � w\k22 and R(w) = kw � w\k1 (Note that the small �
ensures that Assumption 1 holds)

We compare the ADAM optimizer [Kingma and Ba, 2014], GD and ADMM (450 iterations and
for GD and ADAM, and 300 iterations for EADMM). We use ADAM to solve the `2 projection,
while ADMM solves the `1 projection. We evaluate on a test set of 2000 adversarial examples from
the MNIST dataset, obtained with the Projected Gradient Algorithm of Madry et al. [2018] with
30 iterations, stepsize 0.01 and attack size 0.2. For the classifier, we use a standard convolutional
network trained on clean MNIST samples. We also test ADAM, GD (3000 iterations) and EADMM
(2000 iterations) on the `1 denoising task.

The test error as a function of computation time is in Figure 2. We observe that the `1 denoising
performs better when faced with `1 bounded attacks, in the sense that it achieves a lower error with
less computation time. In Figure 3, we plot the `1 reconstruction error achieved by ADAM, GD and
EADMM, averaged over 7 images. GD was unable to decrease the initial error, while ADAM takes a
considerable number of iterations to do so. In contrast, our ADMM already achieves the final error of
ADAM within its first 100 iterations.
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Figure: measurement error per iteration (left). Accuracy on denoised samples (right). MNIST.
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Thank you!

5:30 - 07:30 PM @ East Exhibition Hall B + C
Poster #76
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