Adversarial Examples Are Not Bugs, They Are Features

Andrew Ilyas

Logan Engstrom

Shibani Santurkar

Dimitris Tsipras

Brandon Tran

Aleksander Mądry

Adversarial examples

Adversarial examples

"pig" (91%)

"airliner" (99%)

[Biggio et al. 2013; Szegedy et al. 2013]

Adversarial examples

[Biggio et al. 2013; Szegedy et al. 2013]

Why do these perturbations even exist?

Unreasonable sensitivity to **meaningless features**

Adversarial examples

Unreasonable sensitivity to **meaningless features**

Adversarial examples

Unreasonable sensitivity to **meaningless features**

Adversarial examples

Useful features (used to classify)

Useful features (used to classify)

Useless features

Adv. ex. towards the other class

cat

Training set (cats vs. dogs)

New training set ("mislabelled")

What is our model missing?

Robust features Non-robust features

Robust features Non-robust features

Robust features Non-robust features

Robust features Non-robust features

In our experiment: Model accuracy comes entirely from non-robust features

Non-robust features can be **quite predictive**

Non-robust features can be **quite predictive**

We train classifiers to **maximize accuracy**: No wonder they utilize non-robust features

Non-robust features can be **quite predictive**

We train classifiers to **maximize accuracy**: No wonder they utilize non-robust features

Thus: Relying on non-robust features **directly leads** to adversarial vulnerability

ML models can rely on **unintuitive features**

ML models can rely on **unintuitive features**

→ Aligns with evidence from other work [Jetley et al. 2018; Geirhos et al. 2019; Jacobsen et al. 2019; Yin et al. 2019]

ML models can rely on **unintuitive features**

→ Aligns with evidence from other work [Jetley et al. 2018; Geirhos et al. 2019; Jacobsen et al. 2019; Yin et al. 2019]

→ What does this imply for **model interpretability**?

<figure><figure><figure>

Standard training leads to robust models

Transferability

Robustification Original frog "Robust"

"Robust" frog

Standard training leads to robust models

Theoretical model

Transferability

Robustification Original frog "Robust"

Standard training leads to robust models

Theoretical model

Poster: East Exhibition Hall B + C #85

Transferability

Robustification Original frog "Robust"

Standard training leads to robust models

Theoretical model

Poster: East Exhibition Hall B + C #85

Blog post: gradsci.org/adv

Transferability

Robustification Original frog "Robust"

"Robust" frog

Standard training leads to robust models

Theoretical model

Poster: East Exhibition Hall B + C #85

Blog post: gradsci.org/adv

Library: pip install robustness

Transferability

Robustification Original frog "Robust"

"Robust" frog

Standard training leads to robust models

Theoretical model

Poster: East Exhibition Hall B + C #85

Blog post: gradsci.org/adv

Library: pip install robustness

Tomorrow: "Image Synthesis via Robust Classifiers" Evening poster #81