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Setting: binary feature vectors, binary classification.

Requirement: polynomial sample complexity (efficient robust
learning).

c1 = c2 c1 6= c2

Theorem
Under the exact-in-the-ball definition of robustness, only trivial
concepts can be robustly learned.

I Distributional assumptions are essential !
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A Robustness Threshold

Question: How much perturbation budget ρ can we give an
adversary and still ensure efficient robust learnability?

Our paper: Monotone conjunctions

thesis ∧ sleep deprivation ∧ caffeine

Theorem
Under smooth distributions, the threshold to efficiently robustly
learn monotone conjunctions is ρ = O(log n).

ρ = O(log n): there is a sample-efficient algorithm.

ρ = ω(log n): no sample-efficient learning algorithm exists.

Information-theoretic result: even when simply considering
sample complexity, robust learning can be hard.
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robustness surface under a learning theory perspective.
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I It may be possible to only solve “easy” robust learning
problems with strong distributional assumptions.

I Other learning models, e.g. active learning.
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Thank you!

Paper (arxiv version)

Poster session: Today 10:45 – 12:45 (Learning Theory)


