On the Hardness of Robust Classification

P. Gourdeau, V. Kanade, M. Kwiatkowska and J. Worrell

University of Oxford

Question: how much computational resources and data are needed in robust learning?

Goal: learn a function that will be *exact-in-the-ball* robust against an adversary who can perturb inputs

Setting: binary feature vectors, binary classification.

Setting: binary feature vectors, binary classification. **Requirement**: *polynomial* sample complexity (*efficient robust learning*).

Setting: binary feature vectors, binary classification. **Requirement**: *polynomial* sample complexity (*efficient robust learning*).

Theorem

Under the exact-in-the-ball definition of robustness, only trivial concepts can be robustly learned.

Setting: binary feature vectors, binary classification. **Requirement**: *polynomial* sample complexity (*efficient robust learning*).

$$c_1 = c_2 \bullet \bullet \circ c_1 \neq c_2$$

Theorem

Under the exact-in-the-ball definition of robustness, only trivial concepts can be robustly learned.

Setting: binary feature vectors, binary classification. **Requirement**: *polynomial* sample complexity (*efficient robust learning*).

Theorem

Under the exact-in-the-ball definition of robustness, only trivial concepts can be robustly learned.

Setting: binary feature vectors, binary classification. **Requirement**: *polynomial* sample complexity (*efficient robust learning*).

Theorem

Under the exact-in-the-ball definition of robustness, only trivial concepts can be robustly learned.

Distributional assumptions are essential !

Question: How much perturbation budget ρ can we give an adversary and still ensure efficient robust learnability?

Question: How much perturbation budget ρ can we give an adversary and still ensure efficient robust learnability?

Our paper: Monotone conjunctions

thesis \wedge sleep deprivation \wedge caffeine

Question: How much perturbation budget ρ can we give an adversary and still ensure efficient robust learnability?

Our paper: Monotone conjunctions

thesis \wedge sleep deprivation \wedge caffeine

Theorem

Under smooth distributions, the threshold to efficiently robustly learn monotone conjunctions is $\rho = O(\log n)$.

Question: How much perturbation budget ρ can we give an adversary and still ensure efficient robust learnability?

Our paper: Monotone conjunctions

thesis \wedge sleep deprivation \wedge caffeine

Theorem

Under smooth distributions, the threshold to efficiently robustly learn monotone conjunctions is $\rho = O(\log n)$.

 $\rho = O(\log n)$: there is a sample-efficient algorithm.

Question: How much perturbation budget ρ can we give an adversary and still ensure efficient robust learnability?

Our paper: Monotone conjunctions

thesis \wedge sleep deprivation \wedge caffeine

Theorem

Under smooth distributions, the threshold to efficiently robustly learn monotone conjunctions is $\rho = O(\log n)$.

 $\rho = O(\log n)$: there is a sample-efficient algorithm.

 $\rho = \omega(\log n)$: no sample-efficient learning algorithm exists.

Question: How much perturbation budget ρ can we give an adversary and still ensure efficient robust learnability?

Our paper: Monotone conjunctions

thesis \wedge sleep deprivation \wedge caffeine

Theorem

Under smooth distributions, the threshold to efficiently robustly learn monotone conjunctions is $\rho = O(\log n)$.

 $\rho = O(\log n)$: there is a sample-efficient algorithm.

 $\rho = \omega(\log n)$: no sample-efficient learning algorithm exists.

Information-theoretic result: even when simply considering sample complexity, robust learning can be hard.

Computational Hardness

Question: Can an information-theoretically easy robust learning problem still be computationally hard?

Computational Hardness

Question: Can an information-theoretically easy robust learning problem still be computationally hard? Yes!

Computational Hardness

Question: Can an information-theoretically easy robust learning problem still be computationally hard? Yes!

Simple proof of the result of Bubeck et al. (2018) Come see our poster!

Inadequacies of widely-used and natural definitions of robustness surface under a learning theory perspective.

- Inadequacies of widely-used and natural definitions of robustness surface under a learning theory perspective.
- Easy proof for computational hardness of robust learning.

- Inadequacies of widely-used and natural definitions of robustness surface under a learning theory perspective.
- Easy proof for computational hardness of robust learning.
- It may be possible to only solve "easy" robust learning problems with strong distributional assumptions.

- Inadequacies of widely-used and natural definitions of robustness surface under a learning theory perspective.
- Easy proof for computational hardness of robust learning.
- It may be possible to only solve "easy" robust learning problems with strong distributional assumptions.
- Other learning models, e.g. active learning.

Thank you!

Paper (arxiv version)

Poster session: Today 10:45 – 12:45 (Learning Theory)