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Failure causes:
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repeatable locations

 But repeatable locations are not 
necessarily reliable for matching.
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Proposed architecture

L2-Net: Deep learning of discriminative patch descriptor in euclidean space. Y. Tian, B. Fan, and F. Wu. CVPR, 2017.

Backbone:
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Contributions
We introduce keypoint reliability
 “Is this keypoint good for matching?”

 Jointly predicted along with repeatability

Novel training scheme
 Two novel losses 

 Training from scratch, without annotations, no bias

 State-of-the-art results
 Matching & visual localization

 Even when training without annotations
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Joint descriptor & reliability loss
 Based on the differentiable AP loss 
 originally proposed by He et al. [1]

[1] K. He, Y. Lu, and S. Sclaroff. Local descriptors optimized for average precision. In CVPR, 2018.
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Repeatability loss
 Self-supervised loss

 Key idea:
 Repeatibility maps for an image pairs should be correlated

 We directly maximize the cosine similarity

 Locally rather than globally
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Feature matching experiments
 HPatches dataset:

 116 sequences of 6 images = 696 images

 Viewpoint changes: 59 / Illumination changes: 57 

 Evaluation metric: Mean Matching Accuracy (MMA)
 average percentage of correct matches
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Feature matching experiments

Viewpoint 
change:

Illumination 
change:
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Feature matching experiments
 Ablation study on the losses:
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Feature matching experiments
 Ablation study on the losses:

 Comparison with the state of the art:
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Visual localization experiments
 Aachen day-night benchmark [1]
 4328 daytime training images

 98 night-time queries

 Evaluation metric: 
Percentages of successfully localized images within 3 error thresholds

[1] Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions. T. Sattler, W. Maddern, C. Toft, A. Torii, L. 
Hammarstrand, E. Stenborg, D. Safari, M. Okutomi, M. Pollefeys, J. Sivic, F. Kahl, and T. Pajdla. CVPR, 2018.
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Conclusion

 Come to our poster #XXX!

 The code is online at https://github.com/naver/r2d2

https://github.com/naver/r2d2

