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= Introduction
" Existing methods
= | imitations

" Proposed approach
= Architecture
" Training and losses

" Experimental results
= State-of-the-art matching and localization performance
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Failure causes:

" The keypoint detector only focuses on
repeatable locations

= But repeatable locations are not
necessarily reliable for matching.
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* The keypoint detector only focuses on
repeatable locations

= But repeatable locations are not
necessarily reliable for matching.
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What is a good keypoint?
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Failure causes:

* The keypoint detector only focuses on
repeatable locations

= But repeatable locations are not
necessarily reliable for matching.

© 2019 NAVER LABS. All rights reserved.

What is a good keypoint?
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Proposed architecture

Backbone
network
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Proposed architecture

Backbone: fully convolutional L2 - Net

W,
H
32 32 64 64

128 128 128

descriptors

reliability

"man

iy

repeatability

L2-Net: Deep learning of discriminative patch descriptor in euclidean space. Y. Tian, B. Fan, and F. Wu. CVPR, 2017.

© 2019 NAVER LABS. All rights reserved.

32



Contributions

= We introduce keypoint reliability
" “Is this keypoint good for matching?”
= Jointly predicted along with repeatability

= Novel training scheme
" Two novel losses
" Training from scratch, without annotations, no bias

= State-of-the-art results
" Matching & visual localization
" Even when training without annotations

LABS. All rights reserved
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Trainin

o0 the network

N
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Joint descriptor & reliability loss

= Based on the differentiable AP loss
» originally proposed by He et al. [1]

maneresened— [1] K. He, Y. Lu, and S. Sclaroff. Local descriptors optimized for average precision. In CVPR, 2018.
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Joint descriptor & reliability loss

= Based on the differentiable AP loss
» originally proposed by He et al. [1]

" Given a query descriptor p;; from image I;
* We compare it to all descriptors in image I,:
= 1 positive, and many negatives

= We compute the AP = @(Pij)

© 2019 NAVER LABS. All rights reserved.

[1] K. He, Y. Lu, and S. Sclaroff. Local descriptors optimized for average precision. In CVPR, 2018.
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Joint descriptor & reliability loss

= Based on the differentiable AP loss
» originally proposed by He et al. [1]
" Given a query descriptor p;; from image I;

* We compare it to all descriptors in image I,:
= 1 positive, and many negatives

= We compute the AP = @(Pij)

* Modified to not waste efforts on bad regions
" We estimate the reliability at p;; = R;;

= Many regions can’t be matched (empty, 1-d pattern, repetitive...)
» For these region, reliability is low =2 the loss is almost flat

R LABS. All rights reserved

- [1] K. He, Y. Lu, and S. Sclaroff. Local descriptors optimized for average precision. In CVPR, 2018.
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Joint descriptor & reliability loss

= Based on the differentiable AP loss
= originally proposed by He et al. [1]

" Given a query descriptor p;; from image I; £
= \We compare it to all descriptors in image I,: )
= 1 positive, and many negatives /
" We compute the AP = AP(p;;)
Reliability R;;
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" We estimate the reliability at p;; = R;;
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[1] K. He, Y. Lu, and S. Sclaroff. Local descriptors optimized for average precision. In CVPR, 2018.
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Joint descriptor & reliability loss

= Based on the differentiable AP loss

1.0
= originally proposed by He et al. [1] .
" Given a query descriptor p;; from image I; =
¥
= We compare it to all descriptors in image I,: % o
= 1 positive, and many negatives / ’
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» Modified to not waste efforts on bad r
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[1] K. He, Y. Lu, and S. Sclaroff. Local descriptors optimized for average precision. In CVPR, 2018.
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Joint descriptor & reliability loss

= Based on the differentiable AP loss
= originally proposed by He et al. [1]

" Given a query descriptor p;; from image I;
= \We compare it to all descriptors

in image I,: )
= 1 positive, and many negatives /
" We compute the AP = AP(p;;)
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| Reliability R;;
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[1] K. He, Y. Lu, and S. Sclaroff. Local descriptors optimized for average precision. In CVPR, 2018.
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Repeatability loss

= Self-supervised loss

= Key idea:
= Repeatibility maps for an image pairs should be correlated
= We directly maximize the cosine similarity
= Locally rather than globally

el
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Feature matching experiments

= HPatches dataset:

= 116 sequences of 6 images = 696 images
= Viewpoint changes: 59 / lllumination changes: 57

= Evaluation metric: Mean Matching Accuracy (MMA)
= average percentage of correct matches
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Feature matching experiments

Viewpoint
change:

llumination
change:
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Feature matching experiments

= Ablation study on the losses:

Repeatability  Reliability MMA @3

v 0.588 £ 0.010
v 0.639 £ 0.034
v v 0.688 + 0.009
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Feature matching experiments

= Ablation study on the losses:

Repeatability  Reliability MMA @3
v 0.588 4+ 0.010
v 0.639 4 0.034
v v 0.688 4 0.009

= Comparison with the state of the art:

R2D2 (w/ optical flow)

- R2D2 (w/o annotations)
Hes. Aff. + Root-SIFT
HAN + HN++

DELF

SuperPoint

LF-MNet

D2-Net (Trained)

1 2 3 4 5 6 7 8 9 10
© 2019 NAVER LABS. All rights reserved.
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" Aachen day-night benchmark [1]
= 4328 daytime training images
= 98 night-time queries
= Evaluation metric:
Percentages of successfully localized images within 3 error thresholds

[1] Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions. T. Sattler, W. Maddern, C. Toft, A. Torii, L.
- Hammarstrand, E. Stenborg, D. Safari, M. Okutomi, M. Pollefeys, J. Sivic, F. Kahl, and T. Pajdla. CVPR, 2018. >7
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Visual localization experiments

" Aachen day-night benchmark [1]
= 4328 daytime training images
= 98 night-time queries
= Evaluation metric:
Percentages of successfully localized images within 3 error thresholds

" Local feature visual localization challenge at CVPR’19:

Method #weights  #dim  #kpts || 0.o0m, 2° 1m, 5° 5m, 10°
RootSIFT - 128 11K 33.7 52.0 65.3
HAN-+HN 2 M 128 11K 37.8 54.1 75.5
SuperPoint 1.3 M 256 7K 42.8 57.1 75.5

DELF (new) 9 M 1024 11K 39.8 61.2 85.7

D2-Net 15 M 512 19K 44.9 66.3 88.8

R2D2 (ours) 1.0 M 128 10K 45.9  66.3  88.8

[1] Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions. T. Sattler, W. Maddern, C. Toft, A. Torii, L.
- Hammarstrand, E. Stenborg, D. Safari, M. Okutomi, M. Pollefeys, J. Sivic, F. Kahl, and T. Pajdla. CVPR, 2018. %8
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Conclusion

=" Come to our poster #XXX!

* The code is online at https://github.com/naver/r2d2
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