R2D2: Repeatable and Reliable Detector and Descriptor

Jérôme Revaud

Philippe Weinzaepfel César De Souza Martin Humenberger

NAVER LABS Europe

Outline

- Introduction
 - Existing methods
 - Limitations

- Proposed approach
 - Architecture
 - Training and losses
- Experimental results
 - State-of-the-art matching and localization performance

Introduction

5

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily *reliable* for matching.

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily *reliable* for matching.

What is a good keypoint?

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily reliable for matching.

What is a good keypoint?

Repeatable?

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily reliable for matching.

What is a good keypoint?

Repeatable?

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily reliable for matching.

What is a good keypoint?

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily reliable for matching.

What is a good keypoint?

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily reliable for matching.

What is a good keypoint?

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily reliable for matching.

What is a good keypoint?

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily *reliable* for matching.

What is a good keypoint?

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily *reliable* for matching.

What is a good keypoint?

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily *reliable* for matching.

What is a good keypoint?

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily *reliable* for matching.

What is a good keypoint?

Repeatable?

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily *reliable* for matching.

What is a good keypoint?

Repeatable?

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily *reliable* for matching.

What is a good keypoint?

Repeatable?

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily reliable for matching.

What is a good keypoint?

Repeatable?

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily reliable for matching.

What is a good keypoint?

Repeatable?

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily reliable for matching.

What is a good keypoint?

Repeatable? Reliable

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily *reliable* for matching.

What is a good keypoint?

Repeatable?

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily reliable for matching.

What is a good keypoint?

Repeatable? Reliable

- The keypoint detector only focuses on repeatable locations
- But repeatable locations are not necessarily *reliable* for matching.

What is a good keypoint?

Repeatable? Reliable

Proposed architecture

© 2019 NAVER LABS. All rights reserved.

30

Proposed architecture

Proposed architecture

L2-Net: Deep learning of discriminative patch descriptor in euclidean space. Y. Tian, B. Fan, and F. Wu. CVPR, 2017.

Contributions

- We introduce keypoint reliability
 - "Is this keypoint good for matching?"
 - Jointly predicted along with repeatability
- Novel training scheme
 - Two novel losses
 - Training from scratch, without annotations, no bias
- State-of-the-art results
 - Matching & visual localization
 - Even when training without annotations

Training the network

Training the network

ground-truth pixel correspondences (a.k.a optical flow)

36

Training the network

37

Training the network

38

- Based on the differentiable AP loss
 - originally proposed by He et al. [1]

- Based on the differentiable AP loss
 - originally proposed by He et al. [1]
- lacktriangle Given a query descriptor p_{ij} from image I_1
 - We compare it to **all** descriptors in image I_2 :
 - 1 positive, and many negatives
 - We compute the AP = $\widetilde{AP}(p_{ij})$

- Based on the differentiable AP loss
 - originally proposed by He et al. [1]
- lacktriangle Given a query descriptor p_{ij} from image I_1
 - We compare it to **all** descriptors in image I_2 :
 - 1 positive, and many negatives
 - We compute the AP = $\widetilde{AP}(p_{ij})$
- Modified to not waste efforts on bad regions
 - We estimate the reliability at $p_{ij} = R_{ij}$
 - Many regions can't be matched (empty, 1-d pattern, repetitive...)
 - For these region, reliability is low → the loss is almost flat

- Based on the differentiable AP loss
 - originally proposed by He et al. [1]
- lacktriangle Given a query descriptor p_{ij} from image I_1
 - We compare it to **all** descriptors in image I_2 :
 - 1 positive, and many negatives
 - We compute the AP = $\widetilde{AP}(p_{ij})$

- Modified to not waste efforts on bad regions
 - We estimate the reliability at p_{ij} = R_{ij}
 - Many regions can't be matched (empty, 1-d pattern, repetitive...)
 - For these region, reliability is low → the loss is almost flat

- Based on the differentiable AP loss
 - originally proposed by He et al. [1]
- lacktriangle Given a query descriptor p_{ij} from image I_1
 - We compare it to **all** descriptors in image I_2 :
 - 1 positive, and many negatives
 - We compute the AP = $\widetilde{AP}(p_{ij})$

- Modified to not waste efforts on bad regions
 - We estimate the reliability at p_{ij} = R_{ij}
 - Many regions can't be matched (empty, 1-d pattern, repetitive...)
 - For these region, reliability is low → the loss is almost flat

- Based on the differentiable AP loss
 - originally proposed by He et al. [1]
- lacktriangle Given a query descriptor p_{ij} from image I_1
 - We compare it to **all** descriptors in image I_2 :
 - 1 positive, and many negatives
 - We compute the AP = $\widetilde{AP}(p_{ij})$

- Modified to not waste efforts on bad regions
 - We estimate the reliability at p_{ij} = R_{ij}
 - Many regions can't be matched (empty, 1-d pattern, repetitive...)
 - For these region, reliability is low → the loss is almost flat

Image

Predicted reliability

Image

Predicted reliability

Image

Image

Predicted reliability

Image

← Same with repetitive patterns (unseen at training)

Predicted reliability

Image

← Same with repetitive patterns (unseen at training)

Predicted reliability

Repeatability loss

- Self-supervised loss
- Key idea:
 - Repeatibility maps for an image pairs should be correlated
 - We directly maximize the cosine similarity
 - Locally rather than globally

Repeatability loss

- Self-supervised loss
- Key idea:
 - Repeatibility maps for an image pairs should be correlated
 - We directly maximize the cosine similarity
 - Locally rather than globally

- HPatches dataset:
 - 116 sequences of 6 images = 696 images
 - Viewpoint changes: 59 / Illumination changes: 57
- Evaluation metric: Mean Matching Accuracy (MMA)
 - average percentage of correct matches

© 2019 NAVER LABS. All rights reserved.

53

Viewpoint change:

Illumination change:

Ablation study on the losses:

Repeatability	Reliability	MMA@3
	✓	0.588 ± 0.010 0.639 ± 0.034 0.688 ± 0.009
√	\checkmark	0.688 ± 0.009

Ablation study on the losses:

Repeatability	Reliability	MMA@3
	\checkmark	0.588 ± 0.010
√	\checkmark	0.588 ± 0.010 0.639 ± 0.034 0.688 ± 0.009

Comparison with the state of the art:

- Aachen day-night benchmark [1]
 - 4328 daytime training images
 - 98 night-time queries
 - Evaluation metric:

Percentages of successfully localized images within 3 error thresholds

- Aachen day-night benchmark [1]
 - 4328 daytime training images
 - 98 night-time queries
 - Evaluation metric:

Percentages of successfully localized images within 3 error thresholds

Method	# weights	$\#\mathrm{dim}$	#kpts	$0.5 \text{m}, 2^{\circ}$	1m, 5°	5m, 10°
RootSIFT	-	128	11K	33.7	52.0	65.3
HAN+HN	$2 \mathrm{M}$	128	11K	37.8	54.1	75.5
SuperPoint	$1.3~\mathrm{M}$	256	7K	42.8	57.1	75.5
DELF (new)	9 M	1024	11K	39.8	61.2	85.7
D2-Net	15 M	512	19K	44.9	66.3	88.8
R2D2 (ours)	1.0 M	128	10K	45.9	66.3	88.8

- Aachen day-night benchmark [1]
 - 4328 daytime training images
 - 98 night-time queries
 - Evaluation metric:

Percentages of successfully localized images within 3 error thresholds

Method	#weights	$\#\mathrm{dim}$	#kpts	$0.5 \text{m}, 2^{\circ}$	1m, 5°	5m, 10°
RootSIFT	-	128	11K	33.7	52.0	65.3
HAN+HN	$2 \mathrm{M}$	128	11K	37.8	54.1	75.5
SuperPoint	$1.3 \mathrm{M}$	256	7K	42.8	57.1	75.5
DELF (new)	9 M	1024	11K	39.8	61.2	85.7
D2-Net	15 M	512	19K	44.9	66.3	88.8
R2D2 (ours)	1.0 M	128	10K	45.9	66.3	88.8

- Aachen day-night benchmark [1]
 - 4328 daytime training images
 - 98 night-time queries
 - Evaluation metric:

Percentages of successfully localized images within 3 error thresholds

Method	#weights	$\#\mathrm{dim}$	#kpts	$0.5 \text{m}, 2^{\circ}$	1m, 5°	5m, 10°
RootSIFT	-	128	11K	33.7	52.0	65.3
$_{ m HAN+HN}$	2 M	128	11K	37.8	54.1	75.5
SuperPoint	1.3 M	256	7K	42.8	57.1	75.5
DELF (new)	9 M	1024	11K	39.8	61.2	85.7
D2-Net	15 M	512	19K	44.9	66.3	88.8
R2D2 (ours)	1.0 M	128	10K	45.9	66.3	88.8

- Aachen day-night benchmark [1]
 - 4328 daytime training images
 - 98 night-time queries
 - Evaluation metric:

Percentages of successfully localized images within 3 error thresholds

Method	#weights	$\#\mathrm{dim}$	$\#\mathrm{kpts}$	$0.5 \text{m}, 2^{\circ}$	1m, 5°	5m, 10°
RootSIFT	-	128	11K	33.7	52.0	65.3
HAN+HN	$2 \mathrm{M}$	128	11K	37.8	54.1	75.5
SuperPoint	$1.3 \mathrm{M}$	256	7K	42.8	57.1	75.5
DELF (new)	9 M	1024	11K	39.8	61.2	85.7
D2-Net	15 M	512	19K	44.9	66.3	88.8
R2D2 (ours)	1.0 M	128	10K	45.9	66.3	88.8

- Aachen day-night benchmark [1]
 - 4328 daytime training images
 - 98 night-time queries
 - Evaluation metric:

Percentages of successfully localized images within 3 error thresholds

Method	# weights	$\#\mathrm{dim}$	#kpts	$0.5 \text{m}, 2^{\circ}$	1m, 5°	5m, 10°
RootSIFT	-	128	11K	33.7	52.0	65.3
HAN+HN	$2 \mathrm{M}$	128	11K	37.8	54.1	75.5
SuperPoint	$1.3 \mathrm{M}$	256	7K	42.8	57.1	75.5
DELF (new)	9 M	1024	11K	39.8	61.2	85.7
D2-Net	15 M	512	19K	44.9	66.3	88.8
R2D2 (ours)	1.0 M	128	10K	45.9	66.3	88.8

Conclusion

Come to our poster #XXX!

■ The code is online at https://github.com/naver/r2d2