Surfing: Iterative Optimization Over Incrementally Trained Deep Networks

Ganlin Song, Zhou Fan, John Lafferty

Department of Statistics and Data Science

Yale University

Ganlin Song, Zhou Fan, John Lafferty

Background

We consider inverting a trained generative network G by

$$\min_{x} f(x) = \min_{x} \|G(x) - y\|^2$$

Background

• Compressed sensing framework: observe $z = Ay + \epsilon$; recover y by (here field bries & Direction 2017)

(Bora, Jalal, Price & Dimakis 2017)

$$\min_{x} f(x) = \min_{x} ||AG(x) - z||^{2}$$

$$y \xrightarrow{A} z \xrightarrow{} \min_{f(x)} x \xrightarrow{\hat{x}} x \xrightarrow{} y$$

Background

Compressed sensing framework: observe $z = Ay + \epsilon$; recover y by

(Bora, Jalal, Price & Dimakis 2017)

$$\min_{x} f(x) = \min_{x} ||AG(x) - z||^{2}$$

$$y \xrightarrow{A} z \xrightarrow{} \min_{f(x)} \xrightarrow{} \hat{x} \xrightarrow{} f(x) \xrightarrow{} \hat{x} \xrightarrow{} \hat{y}$$

• f(x) is non-convex; gradient descent not guaranteed to reach global optimum

Ganlin Song, Zhou Fan, John Lafferty

Motivation

Landscape of $x \mapsto -f_{\theta}(x) = -\|G_{\theta}(x) - y\|^2$, as weights θ are trained

Algorithm

Intuition

- The landscape for initial random network is "nice"
- Initialize with random network and track optimum for intermediate networks

Surfing Algorithm

- Obtain a sequence of parameters $\theta_0, \theta_1, \ldots, \theta_T$ during training
- Optimize empirical risk function $f_{\theta_0}, f_{\theta_1}, \ldots, f_{\theta_T}$ iteratively using gradient descent
- For each $t \in \{1, ..., T\}$, initialize gradient descent at the solution from time t 1

Theory and Experiments

Theoretical Results

- **1** If G_{θ} has random parameters, all critical points of $f_{\theta}(x)$ belong to a small neighborhood around 0 with high probability (Builds on Hand & Voroninski 2017)
- ² Under certain conditions, modified surfing can track the minimizer

6/6

Theory and Experiments

Theoretical Results

- **1** If G_{θ} has random parameters, all critical points of $f_{\theta}(x)$ belong to a small neighborhood around 0 with high probability (Builds on Hand & Voroninski 2017)
- ⁽²⁾ Under certain conditions, modified surfing can track the minimizer

Experiments

For DCGAN trained on Fashion-MNIST

