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Dimensionality reduction (`2-to-`2)

A randomized map Rn → Rm (where m� n) that preserves distances.

A pre-processing step in many applications:

clustering nearest neighbors

Key question: What is the tradeoff between the dimension m, the
performance in distance preservation, and the projection time?

This paper: A theoretical analysis of this tradeoff for a state-of-the-art
dimensionality reduction scheme on feature vectors.
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Feature hashing (Weinberger et al. ’09)

One standard dimensionality reduction scheme is feature hashing.

Use a hash function h : {1, . . . , n} → {1, . . . ,m} on coordinates.

Use random signs to handle collisions: f (x)i =
∑

j∈h−1(i) σjxj .
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Sparse Johnson-Lindenstrauss transform (KN ’12)

Sparse JL is a state-of-the-art sparse dimensionality reduction.

Use many (anti-correlated) hash fns h1, . . . , hs : {1, . . . , n} → {1, . . . ,m}.
=⇒ Each input coordinate is mapped to s output coordinates.

Use random signs to deal with collisions.

That is: f (x)i = 1√
s

∑s
k=1

(∑
j∈h−1

k (i) σ
k
j xj

)
.

(Alternate view: a random sparse matrix w/ s nonzero entries per column.)

The tradeoff: higher s preserves distances better, but takes longer.

This work

Analysis of tradeoff for sparse JL between # of hash functions s,
dimension m, and performance in `2-distance preservation.
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Intuition for this paper

Analysis of sparse JL with respect to a performance measure:
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Traditional mathematical framework

Consider a probability distribution F over linear maps f : Rn → Rm.

Geometry-preserving condition. For each x ∈ Rn:

Pf ∈F [‖f (x)‖2 ∈ (1± ε) ‖x‖2] > 1− δ,

for ε target error, δ target failure probability.

(Can apply to differences x = x1 − x2 since f is linear.)

Sparse JL can sometimes perform much better in practice on
feature vectors than traditional theory suggests...
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Performance on feature vectors (Weinberger et al. ’09)

Consider vectors w/ small `∞-to-`2 norm ratio:

Sv = {x ∈ Rn | ‖x‖∞ ≤ v ‖x‖2} .

Let Fs,m be the distribution given by sparse JL with parameters s and m.

Definition

v(m, ε, δ, s) is the supremum over v ∈ [0, 1] such that:
Pf ∈Fs,m [‖f (x)‖2 ∈ (1± ε) ‖x‖2] > 1− δ holds for each x ∈ Sv .

I v(m, ε, δ, s) = 0 =⇒ poor performance

I v(m, ε, δ, s) = 1 =⇒ full performance

I v(m, ε, δ, s) ∈ (0, 1) =⇒ good performance on x ∈ Sv(m,ε,δ,s)

We give a tight theoretical analysis of the function v(m, ε, δ, s).
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Informal statement of main result

Goal: Pf ∈F [‖f (x)‖2 ∈ (1± ε) ‖x‖2] > 1− δ.

v(m, ε, δ, s) := sup over v ∈ [0, 1] s.t. sparse JL meets `2 goal on x ∈ Sv .

Theorem (Informal)

For error ε and failure probability δ, sparse JL with projected dimension m
and s hash functions has four regimes in its performance: that is,

v(m, ε, δ, s) =


1 (full performance) High m
√
sB1 (partial performance) Middle m
√
s min (B1,B2) (partial performance) Middle m

0 (poor performance) Small m,

where p = ln(1/δ), B1 =
√

ln(mε2/p)/
√
p and B2 = ln(mε/p)/p.
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v(m, ε, δ, s) on more synthetic data
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Sparse JL on News20 dataset

Sparse JL with 4 hash fns can significantly outperform feature hashing!
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Comparison to previous work

Goal: Pf ∈F [‖f (x)‖2 ∈ (1± ε) ‖x‖2] > 1− δ.

v(m, ε, δ, s) := sup over v ∈ [0, 1] s.t. sparse JL meets `2 goal on x ∈ Sv .

Bounds on v (Weinberger et al. ’09,..., Freksen et al. ’18):
I v(m, ε, δ, 1) understood
I v(m, ε, δ, s) bound for multiple hashing (a suboptimal construction)

Bounds for sparse JL on full space Rn:
I Can set m ≈ ε−2 log(1/δ), s ≈ ε−1 log(1/δ) (Kane and Nelson ’12)
I Can set m ≈ min(2ε−2/δ, ε−2 log(1/δ)eΘ(ε−1 log(1/δ)/s)) (Cohen ’16)

This work

Tight bounds on v(m, ε, δ, s) for a general s > 1 for sparse JL.

=⇒ Characterization of sparse JL performance in terms of ε, δ, and
`∞-to-`2 norm ratio for a general # of hash functions s
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Conclusion

Tight analysis of v(m, ε, δ, s) for uniform sparse JL for a general s. Could
inform how to optimally set s and m in practice.

Characterization of sparse JL performance in terms of ε, δ, and `∞-to-`2

norm ratio for a general # of hash functions s.

Evaluation on real-world and synthetic data (sparse JL can perform much
better than feature hashing).

Proof technique involves a new perspective on analyzing JL distributions.

Thank you!
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