Understanding Sparse JL for Feature Hashing

Meena Jagadeesan

Harvard University (Class of 2020)

NeurIPS 2019 (Poster #59)

Understanding Sparse JL for Feature Hashing

A randomized map $\mathbb{R}^n \to \mathbb{R}^m$ (where $m \ll n$) that preserves distances.

Dimensionality reduction (ℓ_2 -to- ℓ_2)

A randomized map $\mathbb{R}^n \to \mathbb{R}^m$ (where $m \ll n$) that preserves distances.

A pre-processing step in many applications:

Dimensionality reduction (ℓ_2 -to- ℓ_2)

A randomized map $\mathbb{R}^n \to \mathbb{R}^m$ (where $m \ll n$) that preserves distances.

A pre-processing step in many applications:

Key question: What is the tradeoff between the dimension *m*, the performance in distance preservation, and the projection time?

Dimensionality reduction (ℓ_2 -to- ℓ_2)

A randomized map $\mathbb{R}^n \to \mathbb{R}^m$ (where $m \ll n$) that preserves distances.

A pre-processing step in many applications:

Key question: What is the tradeoff between the dimension *m*, the performance in distance preservation, and the projection time?

This paper: A theoretical analysis of this tradeoff for a state-of-the-art dimensionality reduction scheme on feature vectors.

One standard dimensionality reduction scheme is feature hashing.

One standard dimensionality reduction scheme is feature hashing.

Use a hash function $h : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}$ on coordinates.

One standard dimensionality reduction scheme is feature hashing.

Use a hash function $h : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}$ on coordinates.

One standard dimensionality reduction scheme is feature hashing.

Use a hash function $h : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}$ on coordinates.

Use random signs to handle collisions: $f(x)_i = \sum_{j \in h^{-1}(i)} \sigma_j x_j$.

Sparse Johnson-Lindenstrauss transform (KN '12)

Sparse JL is a state-of-the-art sparse dimensionality reduction.

Use many (anti-correlated) hash fns $h_1, \ldots, h_s : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}$. \implies Each input coordinate is mapped to *s* output coordinates.

Use many (anti-correlated) hash fns $h_1, \ldots, h_s : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}$. \implies Each input coordinate is mapped to *s* output coordinates.

Use random signs to deal with collisions.

That is:
$$f(x)_i = \frac{1}{\sqrt{s}} \sum_{k=1}^s \left(\sum_{j \in h_k^{-1}(i)} \sigma_j^k x_j \right).$$

Use many (anti-correlated) hash fns $h_1, \ldots, h_s : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}$. \implies Each input coordinate is mapped to *s* output coordinates.

Use random signs to deal with collisions.

That is:
$$f(x)_i = \frac{1}{\sqrt{s}} \sum_{k=1}^s \left(\sum_{j \in h_k^{-1}(i)} \sigma_j^k x_j \right).$$

(Alternate view: a random sparse matrix w/ s nonzero entries per column.)

Use many (anti-correlated) hash fns $h_1, \ldots, h_s : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}$. \implies Each input coordinate is mapped to *s* output coordinates.

Use random signs to deal with collisions.

That is:
$$f(x)_i = \frac{1}{\sqrt{s}} \sum_{k=1}^s \left(\sum_{j \in h_k^{-1}(i)} \sigma_j^k x_j \right).$$

(Alternate view: a random sparse matrix w/ s nonzero entries per column.)

The tradeoff: higher *s* preserves distances better, but takes longer.

Use many (anti-correlated) hash fns $h_1, \ldots, h_s : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}$. \implies Each input coordinate is mapped to *s* output coordinates.

Use random signs to deal with collisions.

That is:
$$f(x)_i = \frac{1}{\sqrt{s}} \sum_{k=1}^s \left(\sum_{j \in h_k^{-1}(i)} \sigma_j^k x_j \right).$$

(Alternate view: a random sparse matrix w/ s nonzero entries per column.)

The tradeoff: higher s preserves distances better, but takes longer.

This work

Analysis of tradeoff for sparse JL between # of hash functions s, dimension m, and performance in ℓ_2 -distance preservation.

Geometry-preserving condition. For each $x \in \mathbb{R}^n$:

 $\mathbb{P}_{f\in\mathcal{F}}[\|f(x)\|_2 \in (1\pm\epsilon) \, \|x\|_2] > 1-\delta,$

for ϵ target error, δ target failure probability.

Geometry-preserving condition. For each $x \in \mathbb{R}^n$:

 $\mathbb{P}_{f\in\mathcal{F}}[\|f(x)\|_2\in(1\pm\epsilon)\,\|x\|_2]>1-\delta,$

for ϵ target error, δ target failure probability.

(Can apply to *differences* $x = x_1 - x_2$ since f is linear.)

Geometry-preserving condition. For each $x \in \mathbb{R}^n$:

 $\mathbb{P}_{f\in\mathcal{F}}[\|f(x)\|_2\in(1\pm\epsilon)\,\|x\|_2]>1-\delta,$

for ϵ target error, δ target failure probability.

(Can apply to *differences* $x = x_1 - x_2$ since f is linear.)

Sparse JL can sometimes perform much better in practice on feature vectors than traditional theory suggests...

Consider vectors w/ small ℓ_{∞} -to- ℓ_2 norm ratio:

$$S_{\mathbf{v}} = \left\{ x \in \mathbb{R}^n \mid \left\| x \right\|_{\infty} \le \mathbf{v} \left\| x \right\|_2 \right\}.$$

Consider vectors w/ small ℓ_{∞} -to- ℓ_2 norm ratio:

$$S_{\mathbf{v}} = \left\{ x \in \mathbb{R}^n \mid \left\| x \right\|_{\infty} \le \mathbf{v} \left\| x \right\|_2 \right\}.$$

Let $\mathcal{F}_{s,m}$ be the distribution given by sparse JL with parameters s and m.

Consider vectors w/ small $\ell_\infty\text{-to-}\ell_2$ norm ratio:

$$S_{\mathbf{v}} = \left\{ x \in \mathbb{R}^n \mid \left\| x \right\|_{\infty} \le \mathbf{v} \left\| x \right\|_2 \right\}.$$

Let $\mathcal{F}_{s,m}$ be the distribution given by sparse JL with parameters s and m.

Definition

 $v(m,\epsilon,\delta,s)$ is the supremum over $v \in [0,1]$ such that: $\mathbb{P}_{f \in \mathcal{F}_{s,m}}[\|f(x)\|_2 \in (1 \pm \epsilon) \|x\|_2] > 1 - \delta$ holds for each $x \in S_v$.

Consider vectors w/ small $\ell_\infty\text{-to-}\ell_2$ norm ratio:

$$S_{\mathbf{v}} = \left\{ x \in \mathbb{R}^n \mid \left\| x \right\|_{\infty} \le \mathbf{v} \left\| x \right\|_2 \right\}.$$

Let $\mathcal{F}_{s,m}$ be the distribution given by sparse JL with parameters s and m.

Definition

 $v(m,\epsilon,\delta,s)$ is the supremum over $v \in [0,1]$ such that: $\mathbb{P}_{f \in \mathcal{F}_{s,m}}[\|f(x)\|_2 \in (1 \pm \epsilon) \|x\|_2] > 1 - \delta$ holds for each $x \in S_v$.

- $v(m, \epsilon, \delta, s) = 0 \implies$ poor performance
- $v(m, \epsilon, \delta, s) = 1 \implies$ full performance

►
$$v(m, \epsilon, \delta, s) \in (0, 1) \implies$$
 good performance on $x \in S_{v(m, \epsilon, \delta, s)}$

Consider vectors w/ small $\ell_\infty\text{-to-}\ell_2$ norm ratio:

$$S_{\mathbf{v}} = \left\{ x \in \mathbb{R}^n \mid \left\| x \right\|_{\infty} \le \mathbf{v} \left\| x \right\|_2 \right\}.$$

Let $\mathcal{F}_{s,m}$ be the distribution given by sparse JL with parameters s and m.

Definition

 $v(m,\epsilon,\delta,s)$ is the supremum over $v \in [0,1]$ such that: $\mathbb{P}_{f \in \mathcal{F}_{s,m}}[\|f(x)\|_2 \in (1 \pm \epsilon) \|x\|_2] > 1 - \delta$ holds for each $x \in S_v$.

- $v(m, \epsilon, \delta, s) = 0 \implies$ poor performance
- $v(m, \epsilon, \delta, s) = 1 \implies$ full performance

► $v(m, \epsilon, \delta, s) \in (0, 1) \implies$ good performance on $x \in S_{v(m, \epsilon, \delta, s)}$

We give a tight theoretical analysis of the function $v(m, \epsilon, \delta, s)$.

Informal statement of main result

Goal: $\mathbb{P}_{f \in \mathcal{F}}[\|f(x)\|_2 \in (1 \pm \epsilon) \|x\|_2] > 1 - \delta.$

 $v(m, \epsilon, \delta, s) :=$ sup over $v \in [0, 1]$ s.t. sparse JL meets ℓ_2 goal on $x \in S_v$.

Goal: $\mathbb{P}_{f \in \mathcal{F}}[\|f(x)\|_2 \in (1 \pm \epsilon) \|x\|_2] > 1 - \delta.$

 $v(m,\epsilon,\delta,s) :=$ sup over $v \in [0,1]$ s.t. sparse JL meets ℓ_2 goal on $x \in S_v$.

Theorem (Informal)

For error ϵ and failure probability δ , sparse JL with projected dimension m and s hash functions has **four regimes** in its performance: that is,

$$v(m, \epsilon, \delta, s) = \begin{cases} 1 \text{ (full performance)} & \text{High } m \\ \sqrt{s}B_1 \text{ (partial performance)} & \text{Middle } m \\ \sqrt{s}\min(B_1, B_2) \text{ (partial performance)} & \text{Middle } m \\ 0 \text{ (poor performance)} & \text{Small } m, \end{cases}$$

where $p = \ln(1/\delta)$, $B_1 = \sqrt{\ln(m\epsilon^2/p)}/\sqrt{p}$ and $B_2 = \ln(m\epsilon/p)/p$.

Goal: $\mathbb{P}_{f \in \mathcal{F}}[\|f(x)\|_2 \in (1 \pm \epsilon) \|x\|_2] > 1 - \delta.$

 $v(m,\epsilon,\delta,s) :=$ sup over $v \in [0,1]$ s.t. sparse JL meets ℓ_2 goal on $x \in S_v$.

Theorem (Informal)

For error ϵ and failure probability δ , sparse JL with projected dimension m and s hash functions has **four regimes** in its performance: that is,

$$v(m, \epsilon, \delta, s) = \begin{cases} 1 \ (full \ performance) & High \ m \\ \sqrt{s}B_1 \ (partial \ performance) & Middle \ m \\ \sqrt{s} \min (B_1, B_2) \ (partial \ performance) & Middle \ m \\ 0 \ (poor \ performance) & Small \ m, \end{cases}$$

where $p = \ln(1/\delta)$, $B_1 = \sqrt{\ln(m\epsilon^2/p)}/\sqrt{p}$ and $B_2 = \ln(m\epsilon/p)/p$.

$v(m, \epsilon, \delta, s)$ on more synthetic data

$v(m,\epsilon,\delta,s)$ on more synthetic data

$v(m,\epsilon,\delta,s)$ on more synthetic data

$v(m, \epsilon, \delta, s)$ on more synthetic data

Sparse JL on News20 dataset

Sparse JL on News20 dataset

Sparse JL with 4 hash fns can significantly outperform feature hashing!

Goal: $\mathbb{P}_{f \in \mathcal{F}}[\|f(x)\|_2 \in (1 \pm \epsilon) \|x\|_2] > 1 - \delta.$

 $v(m,\epsilon,\delta,s) := \text{sup over } v \in [0,1] \text{ s.t. sparse JL meets } \ell_2 \text{ goal on } x \in S_v.$

Goal: $\mathbb{P}_{f \in \mathcal{F}}[\|f(x)\|_2 \in (1 \pm \epsilon) \|x\|_2] > 1 - \delta.$

 $v(m, \epsilon, \delta, s) :=$ sup over $v \in [0, 1]$ s.t. sparse JL meets ℓ_2 goal on $x \in S_v$.

Bounds on v (Weinberger et al. '09,..., Freksen et al. '18):

- $v(m, \epsilon, \delta, 1)$ understood
- $v(m, \epsilon, \delta, s)$ bound for *multiple hashing* (a suboptimal construction)

Bounds for sparse JL on full space \mathbb{R}^n :

- Can set $m \approx \epsilon^{-2} \log(1/\delta)$, $s \approx \epsilon^{-1} \log(1/\delta)$ (Kane and Nelson '12)
- ► Can set $m \approx \min(2\epsilon^{-2}/\delta, \epsilon^{-2}\log(1/\delta)e^{\Theta(\epsilon^{-1}\log(1/\delta)/s)})$ (Cohen '16)

Goal: $\mathbb{P}_{f \in \mathcal{F}}[\|f(x)\|_2 \in (1 \pm \epsilon) \|x\|_2] > 1 - \delta.$

 $v(m,\epsilon,\delta,s) := \text{sup over } v \in [0,1] \text{ s.t. sparse JL meets } \ell_2 \text{ goal on } x \in S_v.$

Bounds on v (Weinberger et al. '09,..., Freksen et al. '18):

- $v(m, \epsilon, \delta, 1)$ understood
- $v(m, \epsilon, \delta, s)$ bound for *multiple hashing* (a suboptimal construction)

Bounds for sparse JL on full space \mathbb{R}^n :

- Can set $m \approx \epsilon^{-2} \log(1/\delta)$, $s \approx \epsilon^{-1} \log(1/\delta)$ (Kane and Nelson '12)
- ► Can set $m \approx \min(2\epsilon^{-2}/\delta, \epsilon^{-2}\log(1/\delta)e^{\Theta(\epsilon^{-1}\log(1/\delta)/s)})$ (Cohen '16)

This work

Tight bounds on $v(m, \epsilon, \delta, s)$ for a general s > 1 for sparse JL.

Goal: $\mathbb{P}_{f \in \mathcal{F}}[\|f(x)\|_2 \in (1 \pm \epsilon) \|x\|_2] > 1 - \delta.$

 $v(m,\epsilon,\delta,s) := \text{sup over } v \in [0,1] \text{ s.t. sparse JL meets } \ell_2 \text{ goal on } x \in S_v.$

Bounds on v (Weinberger et al. '09,..., Freksen et al. '18):

- $v(m, \epsilon, \delta, 1)$ understood
- ▶ $v(m, \epsilon, \delta, s)$ bound for *multiple hashing* (a suboptimal construction)

Bounds for sparse JL on full space \mathbb{R}^n :

- Can set $m \approx \epsilon^{-2} \log(1/\delta)$, $s \approx \epsilon^{-1} \log(1/\delta)$ (Kane and Nelson '12)
- ► Can set $m \approx \min(2\epsilon^{-2}/\delta, \epsilon^{-2}\log(1/\delta)e^{\Theta(\epsilon^{-1}\log(1/\delta)/s)})$ (Cohen '16)

This work

Tight bounds on $v(m, \epsilon, \delta, s)$ for a general s > 1 for sparse JL.

 \implies Characterization of sparse JL performance in terms of ϵ , δ , and ℓ_{∞} -to- ℓ_2 norm ratio for a general # of hash functions s

Tight analysis of $v(m, \epsilon, \delta, s)$ for uniform sparse JL for a general s. Could inform how to optimally set s and m in practice.

Characterization of sparse JL performance in terms of ϵ , δ , and ℓ_{∞} -to- ℓ_2 norm ratio for a general # of hash functions *s*.

Evaluation on real-world and synthetic data (sparse JL can perform much better than feature hashing).

Proof technique involves a new perspective on analyzing JL distributions.

Thank you!